
Proxmox - Source routing with OpenVZ & Linux

If, like me, you have to run lots of OpenVZ-based virtual server hosts, you will likely have

encountered the fun that is reverse-path filtering, or ‘rp_filter’. This is the function of the kernel

that rejects ‘martian’ IP addresses arriving on any given interface. This is usually a good thing,

until you wish to connect your OpenVZ host to two separate networks and have it route IP

addresses from both subnets to & from your guests via the VENET-style interfaces.

Essentially, despite differing source addresses, only one default gateway exists to send traffic to

IPs not within the connected subnets and thus, traffic on any “secondary” subnet is rejected as a

martian when leaving the host’s interface that is connected to its default gateway.

Some people would use bridged intefaces, although this is sadly not an option for me right now.

Whilst the performance of VENET is supposedly better, we also have a large install-base of

VENET guests that do not wish to be disturbed. So for now I still need a way to make this work

with VENET interfaces (and also VETH if required later).

There are two methods around the return path filtering, with the first being a terrible hack that

should only be used temporarily, if at all… If you echo ‘1’ to

/proc/sys/net/ipv4/conf/all/log_martians, you will be able to see which

interface is filtering martian packets. With that information you can then simply disable the

rp_filter function by echoing ‘0’ to /proc/sys/net/ipv4/conf/INTERFACE/rp_filter and martians

won’t be filtered.

However, this isn’t a sensible option. A better solution is to actually create a routing rule to alter

the default gateway used, based on the source subnet. It took me a little bit of digging, but I

eventually managed to get this working after combing a few sources (including, but not limited

to, the iproute2 man file).

For reference, here’s my routing table showing two networks and two /32 IPs assigned to a

guest’s VENET interface (note that the networks are /23’s, not /24’s!):

Destination Gateway Genmask Flags Metric Ref Use Iface

10.0.9.159 0.0.0.0 255.255.255.255 UH 0 0 0 venet0

10.0.125.53 0.0.0.0 255.255.255.255 UH 0 0 0 venet0

10.0.8.0 0.0.0.0 255.255.254.0 U 0 0 0 br0

10.0.124.0 0.0.0.0 255.255.254.0 U 0 0 0 br1

0.0.0.0 10.0.9.1 0.0.0.0 UG 0 0 0 br0

Start by opening /etc/iproute2/rt_tables in your favourite editor. You’ll need to

append a line to the bottom to create a new routing table:

cat /etc/iproute2/rt_tables

reserved values

255 local

254 main

http://www.ninjabadger.net/2011/08/05/source-routing-with-openvz-linux/

253 default

0 unspec

local

#1 inr.ruhep

100 vlan4

As you can see, I’ve appended a new table named ‘vlan4′ (picking a sensible name helps, in my

case this is the VLAN name for 10.0.124.0/23) and given it a priority of 100. As per my

understanding, the priority should be decremented for each subsequent table defined.

Now you need to use ip to define the new rules & routing behaviour, taking advantage of the

new table we’ve defined. First, create a rule matching traffic from your secondary subnet:

ip rule add from 10.0.124.0/23 iif venet0 table vlan4

For reference, the ‘iif’ attribute is not a mistake; “iif” not “if”. This was also a key part of the

setup, as it only classifies traffic originating from the VENET interfaces, no-where else.

Now add a route to define the new default gateway for our new table of classified traffic and

apply it:

ip route add default via 10.0.125.1 dev br1 table vlan4

ip route flush cache

You should now find that guest traffic from either network is routed correctly without having to

change any rp_filter settings. At any time you can use the following two commands to see your

configuration:

ip rule show

ip route show table vlan4

Be sure to re-apply the ‘ip rule’ and ‘ip route’ statements on your next reboot; under Scientific

Linux 6.0 I’ve used the /etc/rc.local file, but you can just as easily apply them on ifup in

Debian’s network configuration.

Eg for 86.x network:

cp /etc/iproute2/rt_tables /etc/iproute2/rt_tables.org

nano /etc/iproute2/rt_tables

Append 100 vlan85

ip rule add from 192.168.85.0/24 iif venet0 table vlan85

ip route add default via 192.168.85.1 dev vmbr2 table vlan85

ip route flush cache

