Difference between revisions of "FAQ"

From Proxmox VE
Jump to navigation Jump to search
(5 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
Proxmox VE works only on 64-bit CPUs (AMD or Intel). There is no plan
 
Proxmox VE works only on 64-bit CPUs (AMD or Intel). There is no plan
 
for 32-bit for the platform.
 
for 32-bit for the platform.
VMs and Containers can be both 32-bit and/or 64-bit.
+
VMs and Containers can be both 32-bit and 64-bit.
 
Does my CPU support virtualization?
 
Does my CPU support virtualization?
 
To check if your CPU is virtualization compatible, check for the vmx
 
To check if your CPU is virtualization compatible, check for the vmx
Line 21: Line 21:
 
64-bit processors with
 
64-bit processors with
 
Intel
 
Intel
Virtualization Technology (Intel VT-x) support. (List of processors with Intel VT and 64-bit)
+
Virtualization Technology (Intel VT-x) support.
 +
(List of processors with Intel VT and 64-bit)
 
Supported AMD CPUs
 
Supported AMD CPUs
 
64-bit processors with
 
64-bit processors with
 
AMD
 
AMD
 
Virtualization Technology (AMD-V) support.
 
Virtualization Technology (AMD-V) support.
What is a container, CT, VE, Virtual Private Server, VPS?
+
What is a container/virtual environment (VE)/virtual private server (VPS)?
Operating-system-level virtualization is a server-virtualization
+
In the context of containers, these terms all refer to the concept of
method where the kernel of an operating system allows for multiple
+
operating-system-level virtualization. Operating-system-level virtualization is
isolated user-space instances, instead of just one. We call such
+
a method of virtualization, in which the kernel of an operating system
instances containers. As containers use the host’s kernel they are
+
allows for multiple isolated instances, that all share the kernel. When
limited to Linux guests.
+
referring to LXC, we call such instances containers. Because containers use the
 +
host’s kernel rather than emulating a full operating system, they require less
 +
overhead, but are limited to Linux guests.
 
What is a QEMU/KVM guest (or VM)?
 
What is a QEMU/KVM guest (or VM)?
 
A QEMU/KVM guest (or VM) is a guest system running virtualized under
 
A QEMU/KVM guest (or VM) is a guest system running virtualized under
Line 53: Line 56:
 
  Debian EOL
 
  Debian EOL
 
  Proxmox EOL
 
  Proxmox EOL
 +
Proxmox VE 7.x
 +
Debian 11 (Bullseye)
 +
2021-07
 +
tba
 +
tba
 +
Proxmox VE 6.x
 +
Debian 10 (Buster)
 +
2019-07
 +
2022-07
 +
2022-07
 
Proxmox VE 5.x
 
Proxmox VE 5.x
 
Debian 9 (Stretch)
 
Debian 9 (Stretch)
tba
+
2017-07
tba
+
2020-07
tba
+
2020-07
 
Proxmox VE 4.x
 
Proxmox VE 4.x
 
Debian 8 (Jessie)
 
Debian 8 (Jessie)
 
2015-10
 
2015-10
2018-05
+
2018-06
tba
+
2018-06
 
Proxmox VE 3.x
 
Proxmox VE 3.x
 
Debian 7 (Wheezy)
 
Debian 7 (Wheezy)
Line 78: Line 91:
 
2012-03
 
2012-03
 
2013-01
 
2013-01
 +
How can I upgrade Proxmox VE to the next release?
 +
Minor version upgrades, for example upgrading from Proxmox VE in version 5.1
 +
to 5.2, can be done just like any normal update, either through the Web
 +
GUI Node → Updates panel or through the CLI with:
 +
apt update
 +
apt full-upgrade
 +
Always ensure you correctly setup the
 +
package repositories and only
 +
continue with the actual upgrade if apt update did not hit any error.
 +
Major version upgrades, for example going from Proxmox VE 4.4 to 5.0, are
 +
also supported. They must be carefully planned and tested and should
 +
never be started without having a current backup ready.
 +
Although the specific upgrade steps depend on your respective setup, we
 +
provide general instructions and advice of how a upgrade should be
 +
performed:
 +
Upgrade from Proxmox VE 6.x to 7.0
 +
Upgrade from Proxmox VE 5.x to 6.0
 +
Upgrade from Proxmox VE 4.x to 5.0
 +
Upgrade from Proxmox VE 3.x to 4.0
 
LXC vs LXD vs Proxmox Containers vs Docker
 
LXC vs LXD vs Proxmox Containers vs Docker
 
LXC is a userspace interface for the Linux kernel containment
 
LXC is a userspace interface for the Linux kernel containment
 
features. Through a powerful API and simple tools, it lets Linux users
 
features. Through a powerful API and simple tools, it lets Linux users
 
easily create and manage system containers. LXC, as well as the former
 
easily create and manage system containers. LXC, as well as the former
OpenVZ, aims at system virtualization, i.e. allows you to run a
+
OpenVZ, aims at system virtualization. Thus, it allows you to run a
complete OS inside a container, where you log in as ssh, add users,
+
complete OS inside a container, where you log in using ssh, add users,
 
run apache, etc…
 
run apache, etc…
LXD is building on top of LXC to provide a new, better user
+
LXD is built on top of LXC to provide a new, better user
 
experience. Under the hood, LXD uses LXC through liblxc and its Go
 
experience. Under the hood, LXD uses LXC through liblxc and its Go
 
binding to create and manage the containers. It’s basically an
 
binding to create and manage the containers. It’s basically an
 
alternative to LXC’s tools and distribution template system with the
 
alternative to LXC’s tools and distribution template system with the
 
added features that come from being controllable over the network.
 
added features that come from being controllable over the network.
Proxmox Containers also aims at system virtualization, and thus uses
+
Proxmox Containers are how we refer to containers that are created and managed
LXC as the basis of its own container offer. The Proxmox Container
+
using the Proxmox Container Toolkit (pct). They also target system
Toolkit is called pct, and is tightly coupled with Proxmox VE. That means
+
virtualization and use LXC as the basis of the container offering. The
that it is aware of the cluster setup, and it can use the same network
+
Proxmox Container Toolkit (pct) is tightly coupled with Proxmox VE. This means
and storage resources as fully virtualized VMs. You can even use the
+
that it is aware of cluster setups, and it can use the same network
 +
and storage resources as QEMU virtual machines (VMs). You can even use the
 
Proxmox VE firewall, create and restore backups, or manage containers using
 
Proxmox VE firewall, create and restore backups, or manage containers using
 
the HA framework. Everything can be controlled over the network using
 
the HA framework. Everything can be controlled over the network using
 
the Proxmox VE API.
 
the Proxmox VE API.
Docker aims at running a single application running in a contained
+
Docker aims at running a single application in an isolated, self-contained
environment. Hence you’re managing a docker instance from the host with the
+
environment. These are generally referred to as “Application Containers”, rather
docker toolkit. It is not recommended to run docker directly on your
+
than “System Containers”. You manage a Docker instance from the host, using the
Proxmox VE host.
+
Docker Engine command line interface. It is not recommended to run docker
You can however perfectly install and use docker inside a Proxmox Qemu
+
directly on your Proxmox VE host.
VM, and thus getting the benefit of software containerization with the very
+
If you want to run application containers, for example, Docker images, it
strong isolation that VMs provide.
+
is best to run them inside a Proxmox Qemu VM.
 
</pvehide>
 
</pvehide>
 
<!--PVE_IMPORT_END_MARKER-->
 
<!--PVE_IMPORT_END_MARKER-->

Revision as of 10:56, 6 July 2021

Note New FAQs are appended to the bottom of this section.
  1. What distribution is Proxmox VE based on?

    Proxmox VE is based on Debian GNU/Linux

  2. What license does the Proxmox VE project use?

    Proxmox VE code is licensed under the GNU Affero General Public License, version 3.

  3. Will Proxmox VE run on a 32bit processor?

    Proxmox VE works only on 64-bit CPUs (AMD or Intel). There is no plan for 32-bit for the platform.

    Note VMs and Containers can be both 32-bit and 64-bit.
  4. Does my CPU support virtualization?

    To check if your CPU is virtualization compatible, check for the vmx or svm tag in this command output:

    egrep '(vmx|svm)' /proc/cpuinfo
  5. Supported Intel CPUs

    64-bit processors with Intel Virtualization Technology (Intel VT-x) support. (List of processors with Intel VT and 64-bit)

  6. Supported AMD CPUs

    64-bit processors with AMD Virtualization Technology (AMD-V) support.

  7. What is a container/virtual environment (VE)/virtual private server (VPS)?

    In the context of containers, these terms all refer to the concept of operating-system-level virtualization. Operating-system-level virtualization is a method of virtualization, in which the kernel of an operating system allows for multiple isolated instances, that all share the kernel. When referring to LXC, we call such instances containers. Because containers use the host’s kernel rather than emulating a full operating system, they require less overhead, but are limited to Linux guests.

  8. What is a QEMU/KVM guest (or VM)?

    A QEMU/KVM guest (or VM) is a guest system running virtualized under Proxmox VE using QEMU and the Linux KVM kernel module.

  9. What is QEMU?

    QEMU is a generic and open source machine emulator and virtualizer. QEMU uses the Linux KVM kernel module to achieve near native performance by executing the guest code directly on the host CPU. It is not limited to Linux guests but allows arbitrary operating systems to run.

  10. How long will my Proxmox VE version be supported?

    Proxmox VE versions are supported at least as long as the corresponding Debian Version is oldstable. Proxmox VE uses a rolling release model and using the latest stable version is always recommended.

    Proxmox VE Version Debian Version First Release Debian EOL Proxmox EOL

    Proxmox VE 8

    Debian 12 (Bookworm)

    2023-06

    tba

    tba

    Proxmox VE 7

    Debian 11 (Bullseye)

    2021-07

    2024-07

    2024-07

    Proxmox VE 6

    Debian 10 (Buster)

    2019-07

    2022-09

    2022-09

    Proxmox VE 5

    Debian 9 (Stretch)

    2017-07

    2020-07

    2020-07

    Proxmox VE 4

    Debian 8 (Jessie)

    2015-10

    2018-06

    2018-06

    Proxmox VE 3

    Debian 7 (Wheezy)

    2013-05

    2016-04

    2017-02

    Proxmox VE 2

    Debian 6 (Squeeze)

    2012-04

    2014-05

    2014-05

    Proxmox VE 1

    Debian 5 (Lenny)

    2008-10

    2012-03

    2013-01

  11. How can I upgrade Proxmox VE to the next point release?

    Minor version upgrades, for example upgrading from Proxmox VE in version 7.1 to 7.2 or 7.3, can be done just like any normal update. But you should still check the release notes for any relevant noteable, or breaking change.

    For the update itself use either the Web UI Node → Updates panel or through the CLI with:

    apt update
    apt full-upgrade
    Note Always ensure you correctly setup the package repositories and only continue with the actual upgrade if apt update did not hit any error.
  12. How can I upgrade Proxmox VE to the next major release?

    Major version upgrades, for example going from Proxmox VE 4.4 to 5.0, are also supported. They must be carefully planned and tested and should never be started without having a current backup ready.

    Although the specific upgrade steps depend on your respective setup, we provide general instructions and advice of how a upgrade should be performed:

  13. LXC vs LXD vs Proxmox Containers vs Docker

    LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system containers. LXC, as well as the former OpenVZ, aims at system virtualization. Thus, it allows you to run a complete OS inside a container, where you log in using ssh, add users, run apache, etc…

    LXD is built on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It’s basically an alternative to LXC’s tools and distribution template system with the added features that come from being controllable over the network.

    Proxmox Containers are how we refer to containers that are created and managed using the Proxmox Container Toolkit (pct). They also target system virtualization and use LXC as the basis of the container offering. The Proxmox Container Toolkit (pct) is tightly coupled with Proxmox VE. This means that it is aware of cluster setups, and it can use the same network and storage resources as QEMU virtual machines (VMs). You can even use the Proxmox VE firewall, create and restore backups, or manage containers using the HA framework. Everything can be controlled over the network using the Proxmox VE API.

    Docker aims at running a single application in an isolated, self-contained environment. These are generally referred to as “Application Containers”, rather than “System Containers”. You manage a Docker instance from the host, using the Docker Engine command-line interface. It is not recommended to run docker directly on your Proxmox VE host.

    Note If you want to run application containers, for example, Docker images, it is best to run them inside a Proxmox QEMU VM.