Difference between revisions of "Firewall"

From Proxmox VE
Jump to navigation Jump to search
(fix duplicate import)
(2 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
cluster nodes, and the pve-firewall service updates the underlying
 
cluster nodes, and the pve-firewall service updates the underlying
 
iptables rules automatically on changes.
 
iptables rules automatically on changes.
You can configure anything using the GUI (i.e. Datacenter Firewall,
+
You can configure anything using the GUI (i.e. Datacenter → Firewall,
or on a Node Firewall), or you can edit the configuration files
+
or on a Node → Firewall), or you can edit the configuration files
 
directly using your preferred editor.
 
directly using your preferred editor.
 
Firewall configuration files contains sections of key-value
 
Firewall configuration files contains sections of key-value
Line 43: Line 43:
 
[OPTIONS]
 
[OPTIONS]
 
This is used to set cluster wide firewall options.
 
This is used to set cluster wide firewall options.
enable: integer (0 - N)
+
enable: <integer> (0 - N)
 
Enable or disable the firewall cluster wide.
 
Enable or disable the firewall cluster wide.
policy_in: (ACCEPT | DROP | REJECT)
+
policy_in: <ACCEPT | DROP | REJECT>
 
Input policy.
 
Input policy.
policy_out: (ACCEPT | DROP | REJECT)
+
policy_out: <ACCEPT | DROP | REJECT>
 
Output policy.
 
Output policy.
 
[RULES]
 
[RULES]
 
This sections contains cluster wide firewall rules for all nodes.
 
This sections contains cluster wide firewall rules for all nodes.
[IPSET <name>]
+
[IPSET &lt;name&gt;]
 
Cluster wide IP set definitions.
 
Cluster wide IP set definitions.
[GROUP <name>]
+
[GROUP &lt;name&gt;]
 
Cluster wide security group definitions.
 
Cluster wide security group definitions.
 
[ALIASES]
 
[ALIASES]
Line 74: Line 74:
 
something goes wrong .
 
something goes wrong .
 
To simplify that task, you can instead create an IPSet called
 
To simplify that task, you can instead create an IPSet called
“management”, and add all remote IPs there. This creates all required
+
&#8220;management&#8221;, and add all remote IPs there. This creates all required
 
firewall rules to access the GUI from remote.
 
firewall rules to access the GUI from remote.
 
Host Specific Configuration
 
Host Specific Configuration
 
Host related configuration is read from:
 
Host related configuration is read from:
/etc/pve/nodes/<nodename>/host.fw
+
/etc/pve/nodes/&lt;nodename&gt;/host.fw
 
This is useful if you want to overwrite rules from cluster.fw
 
This is useful if you want to overwrite rules from cluster.fw
 
config. You can also increase log verbosity, and set netfilter related
 
config. You can also increase log verbosity, and set netfilter related
Line 84: Line 84:
 
[OPTIONS]
 
[OPTIONS]
 
This is used to set host related firewall options.
 
This is used to set host related firewall options.
enable: boolean
+
enable: &lt;boolean&gt;
 
Enable host firewall rules.
 
Enable host firewall rules.
log_level_in: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
+
log_level_in: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
 
Log level for incoming traffic.
 
Log level for incoming traffic.
log_level_out: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
+
log_level_out: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
 
Log level for outgoing traffic.
 
Log level for outgoing traffic.
ndp: boolean
+
ndp: &lt;boolean&gt;
 
Enable NDP.
 
Enable NDP.
nf_conntrack_max: integer (32768 - N)
+
nf_conntrack_max: &lt;integer&gt; (32768 - N)
 
Maximum number of tracked connections.
 
Maximum number of tracked connections.
nf_conntrack_tcp_timeout_established: integer (7875 - N)
+
nf_conntrack_tcp_timeout_established: &lt;integer&gt; (7875 - N)
 
Conntrack established timeout.
 
Conntrack established timeout.
nosmurfs: boolean
+
nosmurfs: &lt;boolean&gt;
 
Enable SMURFS filter.
 
Enable SMURFS filter.
smurf_log_level: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
+
smurf_log_level: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
 
Log level for SMURFS filter.
 
Log level for SMURFS filter.
tcp_flags_log_level: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
+
tcp_flags_log_level: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
 
Log level for illegal tcp flags filter.
 
Log level for illegal tcp flags filter.
tcpflags: boolean
+
tcpflags: &lt;boolean&gt;
 
Filter illegal combinations of TCP flags.
 
Filter illegal combinations of TCP flags.
 
[RULES]
 
[RULES]
Line 108: Line 108:
 
VM/Container Configuration
 
VM/Container Configuration
 
VM firewall configuration is read from:
 
VM firewall configuration is read from:
/etc/pve/firewall/<VMID>.fw
+
/etc/pve/firewall/&lt;VMID&gt;.fw
 
and contains the following data:
 
and contains the following data:
 
[OPTIONS]
 
[OPTIONS]
 
This is used to set VM/Container related firewall options.
 
This is used to set VM/Container related firewall options.
dhcp: boolean
+
dhcp: &lt;boolean&gt;
 
Enable DHCP.
 
Enable DHCP.
enable: boolean
+
enable: &lt;boolean&gt;
 
Enable/disable firewall rules.
 
Enable/disable firewall rules.
ipfilter: boolean
+
ipfilter: &lt;boolean&gt;
Enable default IP filters. This is equivalent to adding an empty
+
Enable default IP filters. This is equivalent to adding an empty ipfilter-net&lt;id&gt; ipset for every interface. Such ipsets implicitly contain sane default restrictions such as restricting IPv6 link local addresses to the one derived from the interface&#8217;s MAC address. For containers the configured IP addresses will be implicitly added.
ipfilter-net<id> ipset for every interface. Such ipsets implicitly contain
+
log_level_in: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
sane default restrictions such as restricting IPv6 link local addresses to
 
the one derived from the interface’s MAC address. For containers the
 
configured IP addresses will be implicitly added.
 
log_level_in: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
 
 
Log level for incoming traffic.
 
Log level for incoming traffic.
log_level_out: (alert | crit | debug | emerg | err | info | nolog | notice | warning)
+
log_level_out: &lt;alert | crit | debug | emerg | err | info | nolog | notice | warning&gt;
 
Log level for outgoing traffic.
 
Log level for outgoing traffic.
macfilter: boolean
+
macfilter: &lt;boolean&gt;
 
Enable/disable MAC address filter.
 
Enable/disable MAC address filter.
ndp: boolean
+
ndp: &lt;boolean&gt;
 
Enable NDP.
 
Enable NDP.
policy_in: (ACCEPT | DROP | REJECT)
+
policy_in: &lt;ACCEPT | DROP | REJECT&gt;
 
Input policy.
 
Input policy.
policy_out: (ACCEPT | DROP | REJECT)
+
policy_out: &lt;ACCEPT | DROP | REJECT&gt;
 
Output policy.
 
Output policy.
radv: boolean
+
radv: &lt;boolean&gt;
 
Allow sending Router Advertisement.
 
Allow sending Router Advertisement.
 
[RULES]
 
[RULES]
 
This sections contains VM/Container firewall rules.
 
This sections contains VM/Container firewall rules.
[IPSET <name>]
+
[IPSET &lt;name&gt;]
 
IP set definitions.
 
IP set definitions.
 
[ALIASES]
 
[ALIASES]
Line 160: Line 156:
 
DIRECTION MACRO(ACTION) [OPTIONS] # use predefined macro
 
DIRECTION MACRO(ACTION) [OPTIONS] # use predefined macro
 
The following options can be used to refine rule matches.
 
The following options can be used to refine rule matches.
-dest string
+
--dest &lt;string&gt;
Restrict packet destination address. This can refer to a single IP address,
+
Restrict packet destination address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.
an IP set (+ipsetname) or an IP alias definition. You can also specify an
+
--dport &lt;string&gt;
address range like 20.34.101.207-201.3.9.99, or a list of IP addresses
+
Restrict TCP/UDP destination port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.
and networks (entries are separated by comma). Please do not mix IPv4 and
+
--iface &lt;string&gt;
IPv6 addresses inside such lists.
+
Network interface name. You have to use network configuration key names for VMs and containers (net\d+). Host related rules can use arbitrary strings.
-dport string
+
--proto &lt;string&gt;
Restrict TCP/UDP destination port. You can use service names or simple
+
IP protocol. You can use protocol names (tcp/udp) or simple numbers, as defined in /etc/protocols.
numbers (0-65535), as defined in /etc/services. Port ranges can be
+
--source &lt;string&gt;
specified with \d+:\d+, for example 80:85, and you can use comma
+
Restrict packet source address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.
separated list to match several ports or ranges.
+
--sport &lt;string&gt;
-iface string
+
Restrict TCP/UDP source port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.
Network interface name. You have to use network configuration key names for
 
VMs and containers (net\d+). Host related rules can use arbitrary
 
strings.
 
-proto string
 
IP protocol. You can use protocol names (tcp/udp) or simple numbers, as
 
defined in /etc/protocols.
 
-source string
 
Restrict packet source address. This can refer to a single IP address, an
 
IP set (+ipsetname) or an IP alias definition. You can also specify an
 
address range like 20.34.101.207-201.3.9.99, or a list of IP addresses
 
and networks (entries are separated by comma). Please do not mix IPv4 and
 
IPv6 addresses inside such lists.
 
-sport string
 
Restrict TCP/UDP source port. You can use service names or simple numbers
 
(0-65535), as defined in /etc/services. Port ranges can be specified with
 
\d+:\d+, for example 80:85, and you can use comma separated list to
 
match several ports or ranges.
 
 
Here are some examples:
 
Here are some examples:
 
[RULES]
 
[RULES]
Line 204: Line 183:
 
A security group is a collection of rules, defined at cluster level, which
 
A security group is a collection of rules, defined at cluster level, which
 
can be used in all VMs' rules. For example you can define a group named
 
can be used in all VMs' rules. For example you can define a group named
“webserver” with rules to open the http and https ports.
+
&#8220;webserver&#8221; with rules to open the http and https ports.
 
# /etc/pve/firewall/cluster.fw
 
# /etc/pve/firewall/cluster.fw
 
[group webserver]
 
[group webserver]
 
IN  ACCEPT -p tcp -dport 80
 
IN  ACCEPT -p tcp -dport 80
 
IN  ACCEPT -p tcp -dport 443
 
IN  ACCEPT -p tcp -dport 443
Then, you can add this group to a VM’s firewall
+
Then, you can add this group to a VM&#8217;s firewall
# /etc/pve/firewall/<VMID>.fw
+
# /etc/pve/firewall/&lt;VMID&gt;.fw
 
[RULES]
 
[RULES]
 
GROUP webserver
 
GROUP webserver
Line 236: Line 215:
 
IP Sets
 
IP Sets
 
IP sets can be used to define groups of networks and hosts. You can
 
IP sets can be used to define groups of networks and hosts. You can
refer to them with +name` in the firewall rules’ source and dest
+
refer to them with &#8216;+name` in the firewall rules&#8217; source and dest
 
properties.
 
properties.
 
The following example allows HTTP traffic from the management IP
 
The following example allows HTTP traffic from the management IP
Line 247: Line 226:
 
The local cluster network is automatically added to this IP set (alias
 
The local cluster network is automatically added to this IP set (alias
 
cluster_network), to enable inter-host cluster
 
cluster_network), to enable inter-host cluster
communication. (multicast,ssh,)
+
communication. (multicast,ssh,&#8230;)
 
# /etc/pve/firewall/cluster.fw
 
# /etc/pve/firewall/cluster.fw
 
[IPSET management]
 
[IPSET management]
Line 253: Line 232:
 
192.168.2.10/24
 
192.168.2.10/24
 
Standard IP set blacklist
 
Standard IP set blacklist
Traffic from these IPs is dropped by every host’s and VM’s firewall.
+
Traffic from these IPs is dropped by every host&#8217;s and VM&#8217;s firewall.
 
# /etc/pve/firewall/cluster.fw
 
# /etc/pve/firewall/cluster.fw
 
[IPSET blacklist]
 
[IPSET blacklist]
Line 259: Line 238:
 
213.87.123.0/24
 
213.87.123.0/24
 
Standard IP set ipfilter-net*
 
Standard IP set ipfilter-net*
These filters belong to a VM’s network interface and are mainly used to prevent
+
These filters belong to a VM&#8217;s network interface and are mainly used to prevent
 
IP spoofing. If such a set exists for an interface then any outgoing traffic
 
IP spoofing. If such a set exists for an interface then any outgoing traffic
with a source IP not matching its interface’s corresponding ipfilter set will
+
with a source IP not matching its interface&#8217;s corresponding ipfilter set will
 
be dropped.
 
be dropped.
 
For containers with configured IP addresses these sets, if they exist (or are
 
For containers with configured IP addresses these sets, if they exist (or are
activated via the general IP Filter option in the VM’s firewall’s options
+
activated via the general IP Filter option in the VM&#8217;s firewall&#8217;s options
 
tab), implicitly contain the associated IP addresses.
 
tab), implicitly contain the associated IP addresses.
 
For both virtual machines and containers they also implicitly contain the
 
For both virtual machines and containers they also implicitly contain the
 
standard MAC-derived IPv6 link-local address in order to allow the neighbor
 
standard MAC-derived IPv6 link-local address in order to allow the neighbor
 
discovery protocol to work.
 
discovery protocol to work.
/etc/pve/firewall/<VMID>.fw
+
/etc/pve/firewall/&lt;VMID&gt;.fw
 
[IPSET ipfilter-net0] # only allow specified IPs on net0
 
[IPSET ipfilter-net0] # only allow specified IPs on net0
 
192.168.2.10
 
192.168.2.10
Line 295: Line 274:
 
Suricata IPS integration
 
Suricata IPS integration
 
If you want to use the Suricata IPS
 
If you want to use the Suricata IPS
(Intrusion Prevention System), it’s possible.
+
(Intrusion Prevention System), it&#8217;s possible.
 
Packets will be forwarded to the IPS only after the firewall ACCEPTed
 
Packets will be forwarded to the IPS only after the firewall ACCEPTed
 
them.
 
them.
Rejected/Dropped firewall packets don’t go to the IPS.
+
Rejected/Dropped firewall packets don&#8217;t go to the IPS.
 
Install suricata on proxmox host:
 
Install suricata on proxmox host:
 
# apt-get install suricata
 
# apt-get install suricata
 
# modprobe nfnetlink_queue
 
# modprobe nfnetlink_queue
Don’t forget to add nfnetlink_queue to /etc/modules for next reboot.
+
Don&#8217;t forget to add nfnetlink_queue to /etc/modules for next reboot.
 
Then, enable IPS for a specific VM with:
 
Then, enable IPS for a specific VM with:
# /etc/pve/firewall/<VMID>.fw
+
# /etc/pve/firewall/&lt;VMID&gt;.fw
 
[OPTIONS]
 
[OPTIONS]
 
ips: 1
 
ips: 1
Line 316: Line 295:
 
IPv6 does not use the ARP protocol anymore, and instead uses NDP (Neighbor
 
IPv6 does not use the ARP protocol anymore, and instead uses NDP (Neighbor
 
Discovery Protocol) which works on IP level and thus needs IP addresses to
 
Discovery Protocol) which works on IP level and thus needs IP addresses to
succeed. For this purpose link-local addresses derived from the interface’s MAC
+
succeed. For this purpose link-local addresses derived from the interface&#8217;s MAC
 
address are used. By default the NDP option is enabled on both host and VM
 
address are used. By default the NDP option is enabled on both host and VM
 
level to allow neighbor discovery (NDP) packets to be sent and received.
 
level to allow neighbor discovery (NDP) packets to be sent and received.
Line 324: Line 303:
 
for a router), and to receive router advertisement packets. This allows them to
 
for a router), and to receive router advertisement packets. This allows them to
 
use stateless auto configuration. On the other hand VMs cannot advertise
 
use stateless auto configuration. On the other hand VMs cannot advertise
themselves as routers unless the “Allow Router Advertisement” (radv: 1) option
+
themselves as routers unless the &#8220;Allow Router Advertisement&#8221; (radv: 1) option
 
is set.
 
is set.
As for the link local addresses required for NDP, there’s also an “IP Filter”
+
As for the link local addresses required for NDP, there&#8217;s also an &#8220;IP Filter&#8221;
 
(ipfilter: 1) option which can be enabled which has the same effect as adding
 
(ipfilter: 1) option which can be enabled which has the same effect as adding
an ipfilter-net* ipset for each of the VM’s network interfaces containing the
+
an ipfilter-net* ipset for each of the VM&#8217;s network interfaces containing the
 
corresponding link local addresses.  (See the
 
corresponding link local addresses.  (See the
 
Standard IP set ipfilter-net* section for details.)
 
Standard IP set ipfilter-net* section for details.)

Revision as of 10:07, 16 May 2018

Proxmox VE Firewall provides an easy way to protect your IT infrastructure. You can setup firewall rules for all hosts inside a cluster, or define rules for virtual machines and containers. Features like firewall macros, security groups, IP sets and aliases help to make that task easier.

While all configuration is stored on the cluster file system, the iptables-based firewall service runs on each cluster node, and thus provides full isolation between virtual machines. The distributed nature of this system also provides much higher bandwidth than a central firewall solution.

The firewall has full support for IPv4 and IPv6. IPv6 support is fully transparent, and we filter traffic for both protocols by default. So there is no need to maintain a different set of rules for IPv6.

Zones

The Proxmox VE firewall groups the network into the following logical zones:

Host

Traffic from/to a cluster node

VM

Traffic from/to a specific VM

For each zone, you can define firewall rules for incoming and/or outgoing traffic.

Configuration Files

All firewall related configuration is stored on the proxmox cluster file system. So those files are automatically distributed to all cluster nodes, and the pve-firewall service updates the underlying iptables rules automatically on changes.

You can configure anything using the GUI (i.e. DatacenterFirewall, or on a NodeFirewall), or you can edit the configuration files directly using your preferred editor.

Firewall configuration files contain sections of key-value pairs. Lines beginning with a # and blank lines are considered comments. Sections start with a header line containing the section name enclosed in [ and ].

Cluster Wide Setup

The cluster-wide firewall configuration is stored at:

/etc/pve/firewall/cluster.fw

The configuration can contain the following sections:

[OPTIONS]

This is used to set cluster-wide firewall options.

ebtables: <boolean> (default = 1)

Enable ebtables rules cluster wide.

enable: <integer> (0 - N)

Enable or disable the firewall cluster wide.

log_ratelimit: [enable=]<1|0> [,burst=<integer>] [,rate=<rate>]

Log ratelimiting settings

burst=<integer> (0 - N) (default = 5)

Initial burst of packages which will always get logged before the rate is applied

enable=<boolean> (default = 1)

Enable or disable log rate limiting

rate=<rate> (default = 1/second)

Frequency with which the burst bucket gets refilled

policy_in: <ACCEPT | DROP | REJECT>

Input policy.

policy_out: <ACCEPT | DROP | REJECT>

Output policy.

[RULES]

This sections contains cluster-wide firewall rules for all nodes.

[IPSET <name>]

Cluster wide IP set definitions.

[GROUP <name>]

Cluster wide security group definitions.

[ALIASES]

Cluster wide Alias definitions.

Enabling the Firewall

The firewall is completely disabled by default, so you need to set the enable option here:

[OPTIONS]
# enable firewall (cluster-wide setting, default is disabled)
enable: 1
Important If you enable the firewall, traffic to all hosts is blocked by default. Only exceptions is WebGUI(8006) and ssh(22) from your local network.

If you want to administrate your Proxmox VE hosts from remote, you need to create rules to allow traffic from those remote IPs to the web GUI (port 8006). You may also want to allow ssh (port 22), and maybe SPICE (port 3128).

Tip Please open a SSH connection to one of your Proxmox VE hosts before enabling the firewall. That way you still have access to the host if something goes wrong .

To simplify that task, you can instead create an IPSet called “management”, and add all remote IPs there. This creates all required firewall rules to access the GUI from remote.

Host Specific Configuration

Host related configuration is read from:

/etc/pve/nodes/<nodename>/host.fw

This is useful if you want to overwrite rules from cluster.fw config. You can also increase log verbosity, and set netfilter related options. The configuration can contain the following sections:

[OPTIONS]

This is used to set host related firewall options.

enable: <boolean>

Enable host firewall rules.

log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for incoming traffic.

log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for outgoing traffic.

log_nf_conntrack: <boolean> (default = 0)

Enable logging of conntrack information.

ndp: <boolean> (default = 0)

Enable NDP (Neighbor Discovery Protocol).

nf_conntrack_allow_invalid: <boolean> (default = 0)

Allow invalid packets on connection tracking.

nf_conntrack_helpers: <string> (default = ``)

Enable conntrack helpers for specific protocols. Supported protocols: amanda, ftp, irc, netbios-ns, pptp, sane, sip, snmp, tftp

nf_conntrack_max: <integer> (32768 - N) (default = 262144)

Maximum number of tracked connections.

nf_conntrack_tcp_timeout_established: <integer> (7875 - N) (default = 432000)

Conntrack established timeout.

nf_conntrack_tcp_timeout_syn_recv: <integer> (30 - 60) (default = 60)

Conntrack syn recv timeout.

nosmurfs: <boolean>

Enable SMURFS filter.

protection_synflood: <boolean> (default = 0)

Enable synflood protection

protection_synflood_burst: <integer> (default = 1000)

Synflood protection rate burst by ip src.

protection_synflood_rate: <integer> (default = 200)

Synflood protection rate syn/sec by ip src.

smurf_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for SMURFS filter.

tcp_flags_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for illegal tcp flags filter.

tcpflags: <boolean> (default = 0)

Filter illegal combinations of TCP flags.

[RULES]

This sections contains host specific firewall rules.

VM/Container Configuration

VM firewall configuration is read from:

/etc/pve/firewall/<VMID>.fw

and contains the following data:

[OPTIONS]

This is used to set VM/Container related firewall options.

dhcp: <boolean> (default = 0)

Enable DHCP.

enable: <boolean> (default = 0)

Enable/disable firewall rules.

ipfilter: <boolean>

Enable default IP filters. This is equivalent to adding an empty ipfilter-net<id> ipset for every interface. Such ipsets implicitly contain sane default restrictions such as restricting IPv6 link local addresses to the one derived from the interface’s MAC address. For containers the configured IP addresses will be implicitly added.

log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for incoming traffic.

log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for outgoing traffic.

macfilter: <boolean> (default = 1)

Enable/disable MAC address filter.

ndp: <boolean> (default = 0)

Enable NDP (Neighbor Discovery Protocol).

policy_in: <ACCEPT | DROP | REJECT>

Input policy.

policy_out: <ACCEPT | DROP | REJECT>

Output policy.

radv: <boolean>

Allow sending Router Advertisement.

[RULES]

This sections contains VM/Container firewall rules.

[IPSET <name>]

IP set definitions.

[ALIASES]

IP Alias definitions.

Enabling the Firewall for VMs and Containers

Each virtual network device has its own firewall enable flag. So you can selectively enable the firewall for each interface. This is required in addition to the general firewall enable option.

Firewall Rules

Firewall rules consists of a direction (IN or OUT) and an action (ACCEPT, DENY, REJECT). You can also specify a macro name. Macros contain predefined sets of rules and options. Rules can be disabled by prefixing them with |.

Firewall rules syntax
[RULES]

DIRECTION ACTION [OPTIONS]
|DIRECTION ACTION [OPTIONS] # disabled rule

DIRECTION MACRO(ACTION) [OPTIONS] # use predefined macro

The following options can be used to refine rule matches.

--dest <string>

Restrict packet destination address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.

--dport <string>

Restrict TCP/UDP destination port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.

--icmp-type <string>

Specify icmp-type. Only valid if proto equals icmp or icmpv6/ipv6-icmp.

--iface <string>

Network interface name. You have to use network configuration key names for VMs and containers (net\d+). Host related rules can use arbitrary strings.

--log <alert | crit | debug | emerg | err | info | nolog | notice | warning>

Log level for firewall rule.

--proto <string>

IP protocol. You can use protocol names (tcp/udp) or simple numbers, as defined in /etc/protocols.

--source <string>

Restrict packet source address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.

--sport <string>

Restrict TCP/UDP source port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.

Here are some examples:

[RULES]
IN SSH(ACCEPT) -i net0
IN SSH(ACCEPT) -i net0 # a comment
IN SSH(ACCEPT) -i net0 -source 192.168.2.192 # only allow SSH from 192.168.2.192
IN SSH(ACCEPT) -i net0 -source 10.0.0.1-10.0.0.10 # accept SSH for IP range
IN SSH(ACCEPT) -i net0 -source 10.0.0.1,10.0.0.2,10.0.0.3 #accept ssh for IP list
IN SSH(ACCEPT) -i net0 -source +mynetgroup # accept ssh for ipset mynetgroup
IN SSH(ACCEPT) -i net0 -source myserveralias #accept ssh for alias myserveralias

|IN SSH(ACCEPT) -i net0 # disabled rule

IN  DROP # drop all incoming packages
OUT ACCEPT # accept all outgoing packages

Security Groups

A security group is a collection of rules, defined at cluster level, which can be used in all VMs' rules. For example you can define a group named “webserver” with rules to open the http and https ports.

# /etc/pve/firewall/cluster.fw

[group webserver]
IN  ACCEPT -p tcp -dport 80
IN  ACCEPT -p tcp -dport 443

Then, you can add this group to a VM’s firewall

# /etc/pve/firewall/<VMID>.fw

[RULES]
GROUP webserver

IP Aliases

IP Aliases allow you to associate IP addresses of networks with a name. You can then refer to those names:

  • inside IP set definitions

  • in source and dest properties of firewall rules

Standard IP Alias local_network

This alias is automatically defined. Please use the following command to see assigned values:

# pve-firewall localnet
local hostname: example
local IP address: 192.168.2.100
network auto detect: 192.168.0.0/20
using detected local_network: 192.168.0.0/20

The firewall automatically sets up rules to allow everything needed for cluster communication (corosync, API, SSH) using this alias.

The user can overwrite these values in the cluster.fw alias section. If you use a single host on a public network, it is better to explicitly assign the local IP address

#  /etc/pve/firewall/cluster.fw
[ALIASES]
local_network 1.2.3.4 # use the single IP address

IP Sets

IP sets can be used to define groups of networks and hosts. You can refer to them with ‘+name` in the firewall rules’ source and dest properties.

The following example allows HTTP traffic from the management IP set.

IN HTTP(ACCEPT) -source +management

Standard IP set management

This IP set applies only to host firewalls (not VM firewalls). Those IPs are allowed to do normal management tasks (Proxmox VE GUI, VNC, SPICE, SSH).

The local cluster network is automatically added to this IP set (alias cluster_network), to enable inter-host cluster communication. (multicast,ssh,…)

# /etc/pve/firewall/cluster.fw

[IPSET management]
192.168.2.10
192.168.2.10/24

Standard IP set blacklist

Traffic from these IPs is dropped by every host’s and VM’s firewall.

# /etc/pve/firewall/cluster.fw

[IPSET blacklist]
77.240.159.182
213.87.123.0/24

Standard IP set ipfilter-net*

These filters belong to a VM’s network interface and are mainly used to prevent IP spoofing. If such a set exists for an interface then any outgoing traffic with a source IP not matching its interface’s corresponding ipfilter set will be dropped.

For containers with configured IP addresses these sets, if they exist (or are activated via the general IP Filter option in the VM’s firewall’s options tab), implicitly contain the associated IP addresses.

For both virtual machines and containers they also implicitly contain the standard MAC-derived IPv6 link-local address in order to allow the neighbor discovery protocol to work.

/etc/pve/firewall/<VMID>.fw

[IPSET ipfilter-net0] # only allow specified IPs on net0
192.168.2.10

Services and Commands

The firewall runs two service daemons on each node:

  • pvefw-logger: NFLOG daemon (ulogd replacement).

  • pve-firewall: updates iptables rules

There is also a CLI command named pve-firewall, which can be used to start and stop the firewall service:

# pve-firewall start
# pve-firewall stop

To get the status use:

# pve-firewall status

The above command reads and compiles all firewall rules, so you will see warnings if your firewall configuration contains any errors.

If you want to see the generated iptables rules you can use:

# iptables-save

Default firewall rules

The following traffic is filtered by the default firewall configuration:

Datacenter incoming/outgoing DROP/REJECT

If the input or output policy for the firewall is set to DROP or REJECT, the following traffic is still allowed for all Proxmox VE hosts in the cluster:

  • traffic over the loopback interface

  • already established connections

  • traffic using the IGMP protocol

  • TCP traffic from management hosts to port 8006 in order to allow access to the web interface

  • TCP traffic from management hosts to the port range 5900 to 5999 allowing traffic for the VNC web console

  • TCP traffic from management hosts to port 3128 for connections to the SPICE proxy

  • TCP traffic from management hosts to port 22 to allow ssh access

  • UDP traffic in the cluster network to ports 5405-5412 for corosync

  • UDP multicast traffic in the cluster network

  • ICMP traffic type 3 (Destination Unreachable), 4 (congestion control) or 11 (Time Exceeded)

The following traffic is dropped, but not logged even with logging enabled:

  • TCP connections with invalid connection state

  • Broadcast, multicast and anycast traffic not related to corosync, i.e., not coming through ports 5405-5412

  • TCP traffic to port 43

  • UDP traffic to ports 135 and 445

  • UDP traffic to the port range 137 to 139

  • UDP traffic form source port 137 to port range 1024 to 65535

  • UDP traffic to port 1900

  • TCP traffic to port 135, 139 and 445

  • UDP traffic originating from source port 53

The rest of the traffic is dropped or rejected, respectively, and also logged. This may vary depending on the additional options enabled in FirewallOptions, such as NDP, SMURFS and TCP flag filtering.

Please inspect the output of the

 # iptables-save

system command to see the firewall chains and rules active on your system. This output is also included in a System Report, accessible over a node’s subscription tab in the web GUI, or through the pvereport command-line tool.

VM/CT incoming/outgoing DROP/REJECT

This drops or rejects all the traffic to the VMs, with some exceptions for DHCP, NDP, Router Advertisement, MAC and IP filtering depending on the set configuration. The same rules for dropping/rejecting packets are inherited from the datacenter, while the exceptions for accepted incoming/outgoing traffic of the host do not apply.

Again, you can use iptables-save (see above) to inspect all rules and chains applied.

Logging of firewall rules

By default, all logging of traffic filtered by the firewall rules is disabled. To enable logging, the loglevel for incoming and/or outgoing traffic has to be set in FirewallOptions. This can be done for the host as well as for the VM/CT firewall individually. By this, logging of Proxmox VE’s standard firewall rules is enabled and the output can be observed in FirewallLog. Further, only some dropped or rejected packets are logged for the standard rules (see default firewall rules).

loglevel does not affect how much of the filtered traffic is logged. It changes a LOGID appended as prefix to the log output for easier filtering and post-processing.

loglevel is one of the following flags:

loglevel LOGID

nolog

 — 

emerg

0

alert

1

crit

2

err

3

warning

4

notice

5

info

6

debug

7

A typical firewall log output looks like this:

VMID LOGID CHAIN TIMESTAMP POLICY: PACKET_DETAILS

In case of the host firewall, VMID is equal to 0.

Logging of user defined firewall rules

In order to log packets filtered by user-defined firewall rules, it is possible to set a log-level parameter for each rule individually. This allows to log in a fine grained manner and independent of the log-level defined for the standard rules in FirewallOptions.

While the loglevel for each individual rule can be defined or changed easily in the web UI during creation or modification of the rule, it is possible to set this also via the corresponding pvesh API calls.

Further, the log-level can also be set via the firewall configuration file by appending a -log <loglevel> to the selected rule (see possible log-levels).

For example, the following two are identical:

IN REJECT -p icmp -log nolog
IN REJECT -p icmp

whereas

IN REJECT -p icmp -log debug

produces a log output flagged with the debug level.

Tips and Tricks

How to allow FTP

FTP is an old style protocol which uses port 21 and several other dynamic ports. So you need a rule to accept port 21. In addition, you need to load the ip_conntrack_ftp module. So please run:

modprobe ip_conntrack_ftp

and add ip_conntrack_ftp to /etc/modules (so that it works after a reboot).

Suricata IPS integration

If you want to use the Suricata IPS (Intrusion Prevention System), it’s possible.

Packets will be forwarded to the IPS only after the firewall ACCEPTed them.

Rejected/Dropped firewall packets don’t go to the IPS.

Install suricata on proxmox host:

# apt-get install suricata
# modprobe nfnetlink_queue

Don’t forget to add nfnetlink_queue to /etc/modules for next reboot.

Then, enable IPS for a specific VM with:

# /etc/pve/firewall/<VMID>.fw

[OPTIONS]
ips: 1
ips_queues: 0

ips_queues will bind a specific cpu queue for this VM.

Available queues are defined in

# /etc/default/suricata
NFQUEUE=0

Notes on IPv6

The firewall contains a few IPv6 specific options. One thing to note is that IPv6 does not use the ARP protocol anymore, and instead uses NDP (Neighbor Discovery Protocol) which works on IP level and thus needs IP addresses to succeed. For this purpose link-local addresses derived from the interface’s MAC address are used. By default the NDP option is enabled on both host and VM level to allow neighbor discovery (NDP) packets to be sent and received.

Beside neighbor discovery NDP is also used for a couple of other things, like auto-configuration and advertising routers.

By default VMs are allowed to send out router solicitation messages (to query for a router), and to receive router advertisement packets. This allows them to use stateless auto configuration. On the other hand VMs cannot advertise themselves as routers unless the “Allow Router Advertisement” (radv: 1) option is set.

As for the link local addresses required for NDP, there’s also an “IP Filter” (ipfilter: 1) option which can be enabled which has the same effect as adding an ipfilter-net* ipset for each of the VM’s network interfaces containing the corresponding link local addresses. (See the Standard IP set ipfilter-net* section for details.)

Ports used by Proxmox VE

  • Web interface: 8006 (TCP, HTTP/1.1 over TLS)

  • VNC Web console: 5900-5999 (TCP, WebSocket)

  • SPICE proxy: 3128 (TCP)

  • sshd (used for cluster actions): 22 (TCP)

  • rpcbind: 111 (UDP)

  • sendmail: 25 (TCP, outgoing)

  • corosync cluster traffic: 5405-5412 UDP

  • live migration (VM memory and local-disk data): 60000-60050 (TCP)