Proxmox VE Administration Guide

Proxmox Server Solutions GmbH
<support@proxmox.com>

Chapter 1. Introduction

Proxmox VE is a platform to run virtual machines and containers. It is
based on Debian Linux, and completely open source. For maximum
flexibility, we implemented two virtualization technologies -
Kernel-based Virtual Machine (KVM) and container-based virtualization
(LXC).
One main design goal was to make administration as easy as
possible. You can use Proxmox VE on a single node, or assemble a cluster of
many nodes. All management tasks can be done using our web-based
management interface, and even a novice user can setup and install
Proxmox VE within minutes.
[image: Proxmox Software Stack]

1.1. Central Management

While many people start with a single node, Proxmox VE can scale out to a
large set of clustered nodes. The cluster stack is fully integrated
and ships with the default installation.
	
Unique Multi-Master Design

	
The integrated web-based management interface gives you a clean
overview of all your KVM guests and Linux containers and even of your
whole cluster. You can easily manage your VMs and containers, storage
or cluster from the GUI. There is no need to install a separate,
complex, and pricey management server.

	
Proxmox Cluster File System (pmxcfs)

	
Proxmox VE uses the unique Proxmox Cluster file system (pmxcfs), a
database-driven file system for storing configuration files. This
enables you to store the configuration of thousands of virtual
machines. By using corosync, these files are replicated in real time
on all cluster nodes. The file system stores all data inside a
persistent database on disk, nonetheless, a copy of the data resides
in RAM which provides a maximum storage size of 30MB - more than
enough for thousands of VMs.

Proxmox VE is the only virtualization platform using this unique
cluster file system.

	
Web-based Management Interface

	
Proxmox VE is simple to use. Management tasks can be done via the
included web based management interface - there is no need to install a
separate management tool or any additional management node with huge
databases. The multi-master tool allows you to manage your whole
cluster from any node of your cluster. The central web-based
management - based on the JavaScript Framework (ExtJS) - empowers
you to control all functionalities from the GUI and overview history
and syslogs of each single node. This includes running backup or
restore jobs, live-migration or HA triggered activities.

	
Command Line

	
For advanced users who are used to the comfort of the Unix shell or
Windows Powershell, Proxmox VE provides a command-line interface to
manage all the components of your virtual environment. This command-line
interface has intelligent tab completion and full documentation
in the form of UNIX man pages.

	
REST API

	
Proxmox VE uses a RESTful API. We choose JSON as primary data format,
and the whole API is formally defined using JSON Schema. This enables
fast and easy integration for third party management tools like custom
hosting environments.

	
Role-based Administration

	
You can define granular access for all objects (like VMs, storages,
nodes, etc.) by using the role based user- and permission
management. This allows you to define privileges and helps you to
control access to objects. This concept is also known as access
control lists: Each permission specifies a subject (a user or group)
and a role (set of privileges) on a specific path.

	
Authentication Realms

	
Proxmox VE supports multiple authentication sources like Microsoft
Active Directory, LDAP, Linux PAM standard authentication or the
built-in Proxmox VE authentication server.

1.2. Flexible Storage

The Proxmox VE storage model is very flexible. Virtual machine images
can either be stored on one or several local storages or on shared
storage like NFS and on SAN. There are no limits, you may configure as
many storage definitions as you like. You can use all storage
technologies available for Debian Linux.
One major benefit of storing VMs on shared storage is the ability to
live-migrate running machines without any downtime, as all nodes in
the cluster have direct access to VM disk images.
We currently support the following Network storage types:
	
LVM Group (network backing with iSCSI targets)

	
iSCSI target

	
NFS Share

	
CIFS Share

	
Ceph RBD

	
Directly use iSCSI LUNs

	
GlusterFS

Local storage types supported are:
	
LVM Group (local backing devices like block devices, FC devices, DRBD, etc.)

	
Directory (storage on existing filesystem)

	
ZFS

1.3. Integrated Backup and Restore

The integrated backup tool (vzdump) creates consistent snapshots of
running Containers and KVM guests. It basically creates an archive of
the VM or CT data which includes the VM/CT configuration files.
KVM live backup works for all storage types including VM images on
NFS, CIFS, iSCSI LUN, Ceph RBD. The new backup format is optimized for storing
VM backups fast and effective (sparse files, out of order data, minimized I/O).

1.4. High Availability Cluster

A multi-node Proxmox VE HA Cluster enables the definition of highly
available virtual servers. The Proxmox VE HA Cluster is based on
proven Linux HA technologies, providing stable and reliable HA
services.

1.5. Flexible Networking

Proxmox VE uses a bridged networking model. All VMs can share one
bridge as if virtual network cables from each guest were all plugged
into the same switch. For connecting VMs to the outside world, bridges
are attached to physical network cards and assigned a TCP/IP
configuration.
For further flexibility, VLANs (IEEE 802.1q) and network
bonding/aggregation are possible. In this way it is possible to build
complex, flexible virtual networks for the Proxmox VE hosts,
leveraging the full power of the Linux network stack.

1.6. Integrated Firewall

The integrated firewall allows you to filter network packets on
any VM or Container interface. Common sets of firewall rules can
be grouped into “security groups”.

1.7. Hyper-converged Infrastructure

Proxmox VE is a virtualization platform that tightly integrates compute, storage and
networking resources, manages highly available clusters, backup/restore as well
as disaster recovery. All components are software-defined and compatible with
one another.
Therefore it is possible to administrate them like a single system via the
centralized web management interface. These capabilities make Proxmox VE an ideal
choice to deploy and manage an open source
hyper-converged infrastructure.
1.7.1. Benefits of a Hyper-Converged Infrastructure (HCI) with Proxmox VE

A hyper-converged infrastructure (HCI) is especially useful for deployments in
which a high infrastructure demand meets a low administration budget, for
distributed setups such as remote and branch office environments or for virtual
private and public clouds.
HCI provides the following advantages:
	
Scalability: seamless expansion of compute, network and storage devices (i.e.
 scale up servers and storage quickly and independently from each other).

	
Low cost: Proxmox VE is open source and integrates all components you need such as
 compute, storage, networking, backup, and management center. It can replace
 an expensive compute/storage infrastructure.

	
Data protection and efficiency: services such as backup and disaster recovery
 are integrated.

	
Simplicity: easy configuration and centralized administration.

	
Open Source: No vendor lock-in.

1.7.2. Hyper-Converged Infrastructure: Storage

Proxmox VE has tightly integrated support for deploying a hyper-converged storage
infrastructure. You can, for example, deploy and manage the following two
storage technologies by using the web interface only:
	
Ceph: a both self-healing and self-managing shared, reliable and highly
 scalable storage system. Checkout
 how to manage Ceph services on Proxmox VE nodes

	
ZFS: a combined file system and logical volume manager with extensive
 protection against data corruption, various RAID modes, fast and cheap
 snapshots - among other features. Find out
 how to leverage the power of ZFS on Proxmox VE nodes.

Besides above, Proxmox VE has support to integrate a wide range of
additional storage technologies. You can find out about them in the
Storage Manager chapter.

1.8. Why Open Source

Proxmox VE uses a Linux kernel and is based on the Debian GNU/Linux
Distribution. The source code of Proxmox VE is released under the
GNU Affero General Public
License, version 3. This means that you are free to inspect the
source code at any time or contribute to the project yourself.
At Proxmox we are committed to use open source software whenever
possible. Using open source software guarantees full access to all
functionalities - as well as high security and reliability. We think
that everybody should have the right to access the source code of a
software to run it, build on it, or submit changes back to the
project. Everybody is encouraged to contribute while Proxmox ensures
the product always meets professional quality criteria.
Open source software also helps to keep your costs low and makes your
core infrastructure independent from a single vendor.

1.9. Your benefits with Proxmox VE

	
Open source software

	
No vendor lock-in

	
Linux kernel

	
Fast installation and easy-to-use

	
Web-based management interface

	
REST API

	
Huge active community

	
Low administration costs and simple deployment

1.10. Getting Help

1.10.1. Proxmox VE Wiki

The primary source of information is the Proxmox VE Wiki. It combines the reference
documentation with user contributed content.

1.10.2. Community Support Forum

Proxmox VE itself is fully open source, so we always encourage our users to discuss
and share their knowledge using the Proxmox VE Community Forum. The forum is moderated by the
Proxmox support team, and has a large user base from all around the world.
Needless to say, such a large forum is a great place to get information.

1.10.3. Mailing Lists

This is a fast way to communicate with the Proxmox VE community via email.
	
Mailing list for users:
 Proxmox VE User List

Proxmox VE is fully open source and contributions are welcome! The primary
communication channel for developers is the:
	
Mailing list for developers:
 Proxmox VE development
 discussion

1.10.4. Commercial Support

Proxmox Server Solutions GmbH also offers enterprise support available as
Proxmox VE Subscription Service Plans.
All users with a subscription get access to the Proxmox VE
Enterprise Repository, and—with a Basic, Standard
or Premium subscription—also to the Proxmox Customer Portal. The customer
portal provides help and support with guaranteed response times from the Proxmox VE
developers.
For volume discounts, or more information in general, please contact
sales@proxmox.com.

1.10.5. Bug Tracker

Proxmox runs a public bug tracker at https://bugzilla.proxmox.com. If an issue
appears, file your report there. An issue can be a bug as well as a request for
a new feature or enhancement. The bug tracker helps to keep track of the issue
and will send a notification once it has been solved.

1.11. Project History

The project started in 2007, followed by a first stable version in
2008. At the time we used OpenVZ for containers, and KVM for virtual
machines. The clustering features were limited, and the user interface
was simple (server generated web page).
But we quickly developed new features using the
Corosync cluster stack, and the
introduction of the new Proxmox cluster file system (pmxcfs) was a big
step forward, because it completely hides the cluster complexity from
the user. Managing a cluster of 16 nodes is as simple as managing a
single node.
We also introduced a new REST API, with a complete declarative
specification written in JSON-Schema. This enabled other people to
integrate Proxmox VE into their infrastructure, and made it easy to provide
additional services.
Also, the new REST API made it possible to replace the original user
interface with a modern HTML5 application using JavaScript. We also
replaced the old Java based VNC console code with
noVNC. So you only need a web browser
to manage your VMs.
The support for various storage types is another big task. Notably,
Proxmox VE was the first distribution to ship ZFS on Linux by default in
2014. Another milestone was the ability to run and manage
Ceph storage on the hypervisor nodes. Such setups
are extremely cost effective.
When we started we were among the first companies providing
commercial support for KVM. The KVM project itself continuously
evolved, and is now a widely used hypervisor. New features arrive
with each release. We developed the KVM live backup feature, which
makes it possible to create snapshot backups on any storage type.
The most notable change with version 4.0 was the move from OpenVZ to
LXC. Containers are now deeply
integrated, and they can use the same storage and network features
as virtual machines.

1.12. Improving the Proxmox VE Documentation

Contributions and improvements to the Proxmox VE documentation are always welcome.
There are several ways to contribute.
If you find errors or other room for improvement in this documentation, please
file a bug at the Proxmox bug tracker to propose
a correction.
If you want to propose new content, choose one of the following options:
	
The wiki: For specific setups, how-to guides, or tutorials the wiki is the
right option to contribute.

	
The reference documentation: For general content that will be helpful to all
 users please propose your contribution for the reference documentation. This
 includes all information about how to install, configure, use, and
 troubleshoot Proxmox VE features. The reference documentation is written in the
 asciidoc format. To edit the
 documentation you need to clone the git repository at
 git://git.proxmox.com/git/pve-docs.git; then follow the
 README.adoc
 document.

Note
If you are interested in working on the Proxmox VE codebase, the
Developer Documentation wiki article will
show you where to start.

1.13. Translating Proxmox VE

The Proxmox VE user interface is in English by default. However, thanks to the
contributions of the community, translations to other languages are also available.
We welcome any support in adding new languages, translating the latest features, and
improving incomplete or inconsistent translations.
We use gettext for the management of the
translation files. Tools like Poedit offer a nice user
interface to edit the translation files, but you can use whatever editor you’re
comfortable with. No programming knowledge is required for translating.
1.13.1. Translating with git

The language files are available as a
git repository. If you are familiar
with git, please contribute according to our
Developer Documentation.
You can create a new translation by doing the following (replace <LANG> with the
language ID):
git clone git://git.proxmox.com/git/proxmox-i18n.git
cd proxmox-i18n
make init-<LANG>.po
Or you can edit an existing translation, using the editor of your choice:
poedit <LANG>.po

1.13.2. Translating without git

Even if you are not familiar with git, you can help translate Proxmox VE.
To start, you can download the language files
here. Find the
language you want to improve, then right click on the "raw" link of this language
file and select Save Link As…. Make your changes to the file, and then
send your final translation directly to office(at)proxmox.com, together with a
signed
contributor license agreement.

1.13.3. Testing the Translation

In order for the translation to be used in Proxmox VE, you must first translate
the .po file into a .js file. You can do this by invoking the following script,
which is located in the same repository:
./po2js.pl -t pve xx.po >pve-lang-xx.js
The resulting file pve-lang-xx.js can then be copied to the directory
/usr/share/pve-i18n, on your proxmox server, in order to test it out.
Alternatively, you can build a deb package by running the following command from
the root of the repository:
make deb
Important
For either of these methods to work, you need to have the following
perl packages installed on your system. For Debian/Ubuntu:

apt-get install perl liblocale-po-perl libjson-perl

1.13.4. Sending the Translation

You can send the finished translation (.po file) to the Proxmox team at the address
office(at)proxmox.com, along with a signed contributor license agreement.
Alternatively, if you have some developer experience, you can send it as a
patch to the Proxmox VE development mailing list. See
Developer Documentation.

Chapter 2. Installing Proxmox VE

Proxmox VE is based on Debian. This is why the install disk images (ISO files)
provided by Proxmox include a complete Debian system as well as all necessary
Proxmox VE packages.
Tip
See the support table in the FAQ for the
relationship between Proxmox VE releases and Debian releases.

The installer will guide you through the setup, allowing you to partition the
local disk(s), apply basic system configurations (for example, timezone,
language, network) and install all required packages. This process should not
take more than a few minutes. Installing with the provided ISO is the
recommended method for new and existing users.
Alternatively, Proxmox VE can be installed on top of an existing Debian system. This
option is only recommended for advanced users because detailed knowledge about
Proxmox VE is required.

2.1. System Requirements

We recommend using high quality server hardware, when running Proxmox VE in
production. To further decrease the impact of a failed host, you can run Proxmox VE in
a cluster with highly available (HA) virtual machines and containers.
Proxmox VE can use local storage (DAS), SAN, NAS, and distributed storage like Ceph
RBD. For details see chapter storage.
2.1.1. Minimum Requirements, for Evaluation

These minimum requirements are for evaluation purposes only and should not be
used in production.
	
CPU: 64bit (Intel EMT64 or AMD64)

	
Intel VT/AMD-V capable CPU/motherboard for KVM full virtualization support

	
RAM: 1 GB RAM, plus additional RAM needed for guests

	
Hard drive

	
One network card (NIC)

2.1.2. Recommended System Requirements

	
Intel EMT64 or AMD64 with Intel VT/AMD-V CPU flag.

	
Memory: Minimum 2 GB for the OS and Proxmox VE services, plus designated memory for
 guests. For Ceph and ZFS, additional memory is required; approximately 1GB of
 memory for every TB of used storage.

	
Fast and redundant storage, best results are achieved with SSDs.

	
OS storage: Use a hardware RAID with battery protected write cache (“BBU”)
 or non-RAID with ZFS (optional SSD for ZIL).

	
VM storage:

	
For local storage, use either a hardware RAID with battery backed write cache
 (BBU) or non-RAID for ZFS and Ceph. Neither ZFS nor Ceph are compatible with a
 hardware RAID controller.

	
Shared and distributed storage is possible.

	
Redundant (Multi-)Gbit NICs, with additional NICs depending on the preferred
 storage technology and cluster setup.

	
For PCI(e) passthrough the CPU needs to support the VT-d/AMD-d flag.

2.1.3. Simple Performance Overview

To get an overview of the CPU and hard disk performance on an installed Proxmox VE
system, run the included pveperf tool.
Note
This is just a very quick and general benchmark. More detailed tests are
recommended, especially regarding the I/O performance of your system.

2.1.4. Supported Web Browsers for Accessing the Web Interface

To access the web-based user interface, we recommend using one of the following
browsers:
	
Firefox, a release from the current year, or the latest Extended Support Release

	
Chrome, a release from the current year

	
Microsoft’s currently supported version of Edge

	
Safari, a release from the current year

When accessed from a mobile device, Proxmox VE will show a lightweight, touch-based
interface.

2.2. Prepare Installation Media

Download the installer ISO image from: https://www.proxmox.com/en/downloads/proxmox-virtual-environment/iso
The Proxmox VE installation media is a hybrid ISO image. It works in two ways:
	
An ISO image file ready to burn to a CD or DVD.

	
A raw sector (IMG) image file ready to copy to a USB flash drive (USB stick).

Using a USB flash drive to install Proxmox VE is the recommended way because it is
the faster option.
2.2.1. Prepare a USB Flash Drive as Installation Medium

The flash drive needs to have at least 1 GB of storage available.
Note
Do not use UNetbootin. It does not work with the Proxmox VE installation image.

Important
Make sure that the USB flash drive is not mounted and does not
contain any important data.

2.2.2. Instructions for GNU/Linux

On Unix-like operating system use the dd command to copy the ISO image to the
USB flash drive. First find the correct device name of the USB flash drive (see
below). Then run the dd command.
dd bs=1M conv=fdatasync if=./proxmox-ve_*.iso of=/dev/XYZ
Note
Be sure to replace /dev/XYZ with the correct device name and adapt the
input filename (if) path.

Caution
Be very careful, and do not overwrite the wrong disk!

Find the Correct USB Device Name

There are two ways to find out the name of the USB flash drive. The first one is
to compare the last lines of the dmesg command output before and after
plugging in the flash drive. The second way is to compare the output of the
lsblk command. Open a terminal and run:
lsblk
Then plug in your USB flash drive and run the command again:
lsblk
A new device will appear. This is the one you want to use. To be on the extra
safe side check if the reported size matches your USB flash drive.

2.2.3. Instructions for macOS

Open the terminal (query Terminal in Spotlight).
Convert the .iso file to .dmg format using the convert option of hdiutil,
for example:
hdiutil convert proxmox-ve_*.iso -format UDRW -o proxmox-ve_*.dmg
Tip
macOS tends to automatically add .dmg to the output file name.

To get the current list of devices run the command:
diskutil list
Now insert the USB flash drive and run this command again to determine which
device node has been assigned to it. (e.g., /dev/diskX).
diskutil list
diskutil unmountDisk /dev/diskX
Note
replace X with the disk number from the last command.

sudo dd if=proxmox-ve_*.dmg bs=1M of=/dev/rdiskX
Note
rdiskX, instead of diskX, in the last command is intended. It will
increase the write speed.

2.2.4. Instructions for Windows

Using Etcher

Etcher works out of the box. Download Etcher from https://etcher.io. It will
guide you through the process of selecting the ISO and your USB flash drive.

Using Rufus

Rufus is a more lightweight alternative, but you need to use the DD mode to
make it work. Download Rufus from https://rufus.ie/. Either install it or use
the portable version. Select the destination drive and the Proxmox VE ISO file.
Important
Once you Start you have to click No on the dialog asking to
download a different version of GRUB. In the next dialog select the DD mode.

2.3. Using the Proxmox VE Installer

The installer ISO image includes the following:
	
Complete operating system (Debian Linux, 64-bit)

	
The Proxmox VE installer, which partitions the local disk(s) with ext4, XFS,
 BTRFS (technology preview), or ZFS and installs the operating system

	
Proxmox VE Linux kernel with KVM and LXC support

	
Complete toolset for administering virtual machines, containers, the host
 system, clusters and all necessary resources

	
Web-based management interface

Note
All existing data on the selected drives will be removed during the
installation process. The installer does not add boot menu entries for other
operating systems.

Please insert the prepared installation media
(for example, USB flash drive or CD-ROM) and boot from it.
Tip
Make sure that booting from the installation medium (for example, USB) is
enabled in your server’s firmware settings. Secure boot needs to be disabled
when booting an installer prior to Proxmox VE version 8.1.

[image: screenshot/pve-grub-menu.png]
After choosing the correct entry (for example, Boot from USB) the Proxmox VE menu
will be displayed, and one of the following options can be selected:
	
Install Proxmox VE (Graphical)

	
Starts the normal installation.

Tip
It’s possible to use the installation wizard with a keyboard only. Buttons
can be clicked by pressing the ALT key combined with the underlined character
from the respective button. For example, ALT + N to press a Next button.

	
Install Proxmox VE (Terminal UI)

	
Starts the terminal-mode installation wizard. It provides the same overall
installation experience as the graphical installer, but has generally better
compatibility with very old and very new hardware.

	
Install Proxmox VE (Terminal UI, Serial Console)

	
Starts the terminal-mode installation wizard, additionally setting up the Linux
kernel to use the (first) serial port of the machine for in- and output. This
can be used if the machine is completely headless and only has a serial console
available.

[image: screenshot/pve-tui-installer.png]
Both modes use the same code base for the actual installation process to
benefit from more than a decade of bug fixes and ensure feature parity.
Tip
The Terminal UI option can be used in case the graphical installer does
not work correctly, due to e.g. driver issues. See also
adding the nomodeset kernel parameter.

	
Advanced Options: Install Proxmox VE (Graphical, Debug Mode)

	
Starts the installation in debug mode. A console will be opened at several
installation steps. This helps to debug the situation if something goes wrong.
To exit a debug console, press CTRL-D. This option can be used to boot a live
system with all basic tools available. You can use it, for example, to
repair a degraded ZFS rpool or fix the
bootloader for an existing Proxmox VE setup.

	
Advanced Options: Install Proxmox VE (Terminal UI, Debug Mode)

	
Same as the graphical debug mode, but preparing the system to run the
terminal-based installer instead.

	
Advanced Options: Install Proxmox VE (Serial Console Debug Mode)

	
Same the terminal-based debug mode, but additionally sets up the Linux kernel to
use the (first) serial port of the machine for in- and output.

	
Advanced Options: Rescue Boot

	
With this option you can boot an existing installation. It searches all attached
hard disks. If it finds an existing installation, it boots directly into that
disk using the Linux kernel from the ISO. This can be useful if there are
problems with the bootloader (GRUB/systemd-boot) or the BIOS/UEFI is unable to
read the boot block from the disk.

	
Advanced Options: Test Memory (memtest86+)

	
Runs memtest86+. This is useful to check if the memory is functional and free
of errors. Secure Boot must be turned off in the UEFI firmware setup utility to
run this option.

You normally select Install Proxmox VE (Graphical) to start the installation.
[image: screenshot/pve-select-target-disk.png]
The first step is to read our EULA (End User License Agreement). Following this,
you can select the target hard disk(s) for the installation.
Caution
By default, the whole server is used and all existing data is removed.
Make sure there is no important data on the server before proceeding with the
installation.

The Options button lets you select the target file system, which
defaults to ext4. The installer uses LVM if you select
ext4 or xfs as a file system, and offers additional options to
restrict LVM space (see below).
Proxmox VE can also be installed on ZFS. As ZFS offers several software RAID levels,
this is an option for systems that don’t have a hardware RAID controller. The
target disks must be selected in the Options dialog. More ZFS specific
settings can be changed under Advanced Options.
Warning
ZFS on top of any hardware RAID is not supported and can result in data
loss.

[image: screenshot/pve-select-location.png]
The next page asks for basic configuration options like your location, time
zone, and keyboard layout. The location is used to select a nearby download
server, in order to increase the speed of updates. The installer is usually able
to auto-detect these settings, so you only need to change them in rare
situations when auto-detection fails, or when you want to use a keyboard layout
not commonly used in your country.
[image: screenshot/pve-set-password.png]
Next the password of the superuser (root) and an email address needs to be
specified. The password must consist of at least 5 characters. It’s highly
recommended to use a stronger password. Some guidelines are:
	
Use a minimum password length of at least 12 characters.

	
Include lowercase and uppercase alphabetic characters, numbers, and symbols.

	
Avoid character repetition, keyboard patterns, common dictionary words,
 letter or number sequences, usernames, relative or pet names, romantic links
 (current or past), and biographical information (for example ID numbers,
 ancestors' names or dates).

The email address is used to send notifications to the system administrator.
For example:
	
Information about available package updates.

	
Error messages from periodic cron jobs.

[image: screenshot/pve-setup-network.png]
All those notification mails will be sent to the specified email address.
The last step is the network configuration. Network interfaces that are UP
show a filled circle in front of their name in the drop down menu. Please note
that during installation you can either specify an IPv4 or IPv6 address, but not
both. To configure a dual stack node, add additional IP addresses after the
installation.
[image: screenshot/pve-installation.png]
The next step shows a summary of the previously selected options. Please
re-check every setting and use the Previous button if a setting needs to be
changed.
After clicking Install, the installer will begin to format the disks and copy
packages to the target disk(s). Please wait until this step has finished; then
remove the installation medium and restart your system.
[image: screenshot/pve-install-summary.png]
Copying the packages usually takes several minutes, mostly depending on the
speed of the installation medium and the target disk performance.
When copying and setting up the packages has finished, you can reboot the
server. This will be done automatically after a few seconds by default.
Installation Failure. If the installation failed, check out specific errors on the second TTY
(CTRL + ALT + F2) and ensure that the systems meets the
minimum requirements.
If the installation is still not working, look at the
how to get help chapter.
2.3.1. Accessing the Management Interface Post-Installation

[image: screenshot/gui-login-window.png]
After a succesful installation and reboot of the system you can use the Proxmox VE
web interface for further configuration.
	
Point your browser to the IP address given during the installation and port
 8006, for example: https://youripaddress:8006

	
Log in using the root (realm PAM) username and the password chosen during
 installation.

	
Upload your subscription key to gain access to the Enterprise repository.
 Otherwise, you will need to set up one of the public, less tested package
 repositories to get updates for security fixes, bug fixes, and new features.

	
Check the IP configuration and hostname.

	
Check the timezone.

	
Check your Firewall settings.

2.3.2. Advanced LVM Configuration Options

The installer creates a Volume Group (VG) called pve, and additional Logical
Volumes (LVs) called root, data, and swap, if ext4 or xfs is used. To
control the size of these volumes use:
	
hdsize

	
Defines the total hard disk size to be used. This way you can reserve free space
on the hard disk for further partitioning (for example for an additional PV and
VG on the same hard disk that can be used for LVM storage).

	
swapsize

	
Defines the size of the swap volume. The default is the size of the installed
memory, minimum 4 GB and maximum 8 GB. The resulting value cannot be greater
than hdsize/8.

Note
If set to 0, no swap volume will be created.

	
maxroot

	
Defines the maximum size of the root volume, which stores the operation
system. The maximum limit of the root volume size is hdsize/4.

	
maxvz

	
Defines the maximum size of the data volume. The actual size of the data
volume is:

datasize = hdsize - rootsize - swapsize - minfree
Where datasize cannot be bigger than maxvz.
Note
In case of LVM thin, the data pool will only be created if datasize is
bigger than 4GB.

Note
If set to 0, no data volume will be created and the storage
configuration will be adapted accordingly.

	
minfree

	
Defines the amount of free space that should be left in the LVM volume group
pmg. With more than 128GB storage available, the default is 16GB, otherwise
hdsize/8 will be used.

Note
LVM requires free space in the VG for snapshot creation (not required for
lvmthin snapshots).

2.3.3. Advanced ZFS Configuration Options

The installer creates the ZFS pool rpool, if ZFS is used. No swap space is
created but you can reserve some unpartitioned space on the install disks for
swap. You can also create a swap zvol after the installation, although this can
lead to problems (see ZFS swap notes).
	
ashift

	
Defines the ashift value for the created pool. The ashift needs to be set at
least to the sector-size of the underlying disks (2 to the power of ashift is
the sector-size), or any disk which might be put in the pool (for example the
replacement of a defective disk).

	
compress

	
Defines whether compression is enabled for rpool.

	
checksum

	
Defines which checksumming algorithm should be used for rpool.

	
copies

	
Defines the copies parameter for rpool. Check the zfs(8) manpage for the
semantics, and why this does not replace redundancy on disk-level.

	
ARC max size

	
Defines the maximum size the ARC can grow to and thus limits the amount of
memory ZFS will use. See also the section on
how to limit ZFS memory usage for more
details.

	
hdsize

	
Defines the total hard disk size to be used. This is useful to save free space
on the hard disk(s) for further partitioning (for example to create a
swap-partition). hdsize is only honored for bootable disks, that is only the
first disk or mirror for RAID0, RAID1 or RAID10, and all disks in RAID-Z[123].

2.3.4. ZFS Performance Tips

ZFS works best with a lot of memory. If you intend to use ZFS make sure to have
enough RAM available for it. A good calculation is 4GB plus 1GB RAM for each TB
RAW disk space.
ZFS can use a dedicated drive as write cache, called the ZFS Intent Log (ZIL).
Use a fast drive (SSD) for it. It can be added after installation with the
following command:
zpool add <pool-name> log </dev/path_to_fast_ssd>

2.3.5. Adding the nomodeset Kernel Parameter

Problems may arise on very old or very new hardware due to graphics drivers. If
the installation hangs during boot, you can try adding the nomodeset
parameter. This prevents the Linux kernel from loading any graphics drivers and
forces it to continue using the BIOS/UEFI-provided framebuffer.
On the Proxmox VE bootloader menu, navigate to Install Proxmox VE (Terminal UI) and
press e to edit the entry. Using the arrow keys, navigate to the line starting
with linux, move the cursor to the end of that line and add the
parameter nomodeset, separated by a space from the pre-existing last
parameter.
Then press Ctrl-X or F10 to boot the configuration.

2.4. Install Proxmox VE on Debian

Proxmox VE ships as a set of Debian packages and can be installed on top of a standard
Debian installation.
After configuring the repositories you need
to run the following commands:
apt-get update
apt-get install proxmox-ve
Installing on top of an existing Debian installation looks easy, but it presumes
that the base system has been installed correctly and that you know how you want
to configure and use the local storage. You also need to configure the network
manually.
In general, this is not trivial, especially when LVM or ZFS is used.
A detailed step by step how-to can be found on the
wiki.

Chapter 3. Host System Administration

The following sections will focus on common virtualization tasks and explain the
Proxmox VE specifics regarding the administration and management of the host machine.
Proxmox VE is based on Debian GNU/Linux with additional
repositories to provide the Proxmox VE related packages. This means that the full
range of Debian packages is available including security updates and bug fixes.
Proxmox VE provides its own Linux kernel based on the Ubuntu kernel. It has all the
necessary virtualization and container features enabled and includes
ZFS and several extra hardware drivers.
For other topics not included in the following sections, please refer to the
Debian documentation. The
Debian
Administrator's Handbook is available online, and provides a comprehensive
introduction to the Debian operating system (see [Hertzog13]).

3.1. Package Repositories

Proxmox VE uses APT as its
package management tool like any other Debian-based system.
Proxmox VE automatically checks for package updates on a daily basis. The root@pam
user is notified via email about available updates. From the GUI, the
Changelog button can be used to see more details about an selected update.
3.1.1. Repositories in Proxmox VE

Repositories are a collection of software packages, they can be used to install
new software, but are also important to get new updates.
Note
You need valid Debian and Proxmox repositories to get the latest
security updates, bug fixes and new features.

APT Repositories are defined in the file /etc/apt/sources.list and in .list
files placed in /etc/apt/sources.list.d/.
Repository Management

[image: screenshot/gui-node-repositories.png]
Since Proxmox VE 7, you can check the repository state in the web interface.
The node summary panel shows a high level status overview, while the separate
Repository panel shows in-depth status and list of all configured
repositories.
Basic repository management, for example, activating or deactivating a
repository, is also supported.

Sources.list

In a sources.list file, each line defines a package repository. The preferred
source must come first. Empty lines are ignored. A # character anywhere on a
line marks the remainder of that line as a comment. The available packages from
a repository are acquired by running apt-get update. Updates can be installed
directly using apt-get, or via the GUI (Node → Updates).
File /etc/apt/sources.list.

deb http://deb.debian.org/debian bookworm main contrib
deb http://deb.debian.org/debian bookworm-updates main contrib

security updates
deb http://security.debian.org/debian-security bookworm-security main contrib

Proxmox VE provides three different package repositories.

3.1.2. Proxmox VE Enterprise Repository

This is the recommended repository and available for all Proxmox VE subscription
users. It contains the most stable packages and is suitable for production use.
The pve-enterprise repository is enabled by default:
File /etc/apt/sources.list.d/pve-enterprise.list.

deb https://enterprise.proxmox.com/debian/pve bookworm pve-enterprise

Please note that you need a valid subscription key to access the
pve-enterprise repository. We offer different support levels, which you can
find further details about at https://proxmox.com/en/proxmox-virtual-environment/pricing.
Note
You can disable this repository by commenting out the above line using a
(at the start of the line). This prevents error messages if your host does
not have a subscription key. Please configure the pve-no-subscription
repository in that case.

3.1.3. Proxmox VE No-Subscription Repository

As the name suggests, you do not need a subscription key to access
this repository. It can be used for testing and non-production
use. It’s not recommended to use this on production servers, as these
packages are not always as heavily tested and validated.
We recommend to configure this repository in /etc/apt/sources.list.
File /etc/apt/sources.list.

deb http://ftp.debian.org/debian bookworm main contrib
deb http://ftp.debian.org/debian bookworm-updates main contrib

Proxmox VE pve-no-subscription repository provided by proxmox.com,
NOT recommended for production use
deb http://download.proxmox.com/debian/pve bookworm pve-no-subscription

security updates
deb http://security.debian.org/debian-security bookworm-security main contrib

3.1.4. Proxmox VE Test Repository

This repository contains the latest packages and is primarily used by developers
to test new features. To configure it, add the following line to
/etc/apt/sources.list:
sources.list entry for pvetest.

deb http://download.proxmox.com/debian/pve bookworm pvetest

Warning
The pvetest repository should (as the name implies) only be used for
testing new features or bug fixes.

3.1.5. Ceph Reef Enterprise Repository

This repository holds the enterprise Proxmox VE Ceph 18.2 Reef packages. They are
suitable for production. Use this repository if you run the Ceph client or a
full Ceph cluster on Proxmox VE.
File /etc/apt/sources.list.d/ceph.list.

deb https://enterprise.proxmox.com/debian/ceph-reef bookworm enterprise

3.1.6. Ceph Reef No-Subscription Repository

This Ceph repository contains the Ceph 18.2 Reef packages before they are moved
to the enterprise repository and after they where on the test repository.
Note
It’s recommended to use the enterprise repository for production
machines.

File /etc/apt/sources.list.d/ceph.list.

deb http://download.proxmox.com/debian/ceph-reef bookworm no-subscription

3.1.7. Ceph Reef Test Repository

This Ceph repository contains the Ceph 18.2 Reef packages before they are moved
to the main repository. It is used to test new Ceph releases on Proxmox VE.
File /etc/apt/sources.list.d/ceph.list.

deb http://download.proxmox.com/debian/ceph-reef bookworm test

3.1.8. Ceph Quincy Enterprise Repository

This repository holds the enterprise Proxmox VE Ceph Quincy packages. They are
suitable for production. Use this repository if you run the Ceph client or a
full Ceph cluster on Proxmox VE.
File /etc/apt/sources.list.d/ceph.list.

deb https://enterprise.proxmox.com/debian/ceph-quincy bookworm enterprise

3.1.9. Ceph Quincy No-Subscription Repository

This Ceph repository contains the Ceph Quincy packages before they are moved
to the enterprise repository and after they where on the test repository.
Note
It’s recommended to use the enterprise repository for production
machines.

File /etc/apt/sources.list.d/ceph.list.

deb http://download.proxmox.com/debian/ceph-quincy bookworm no-subscription

3.1.10. Ceph Quincy Test Repository

This Ceph repository contains the Ceph Quincy packages before they are moved
to the main repository. It is used to test new Ceph releases on Proxmox VE.
File /etc/apt/sources.list.d/ceph.list.

deb http://download.proxmox.com/debian/ceph-quincy bookworm test

3.1.11. Older Ceph Repositories

Proxmox VE 8 doesn’t support Ceph Pacific, Ceph Octopus, or even older releases for
hyper-converged setups. For those releases, you need to first upgrade Ceph to a
newer release before upgrading to Proxmox VE 8.
See the respective
upgrade guide for details.

3.1.12. Debian Firmware Repository

Starting with Debian Bookworm (Proxmox VE 8) non-free firmware (as defined by
DFSG) has been moved to the
newly created Debian repository component non-free-firmware.
Enable this repository if you want to set up
Early OS Microcode Updates or need additional
Runtime Firmware Files not already
included in the pre-installed package pve-firmware.
To be able to install packages from this component, run
editor /etc/apt/sources.list, append non-free-firmware to the end of each
.debian.org repository line and run apt update.

3.1.13. SecureApt

The Release files in the repositories are signed with GnuPG. APT is using
these signatures to verify that all packages are from a trusted source.
If you install Proxmox VE from an official ISO image, the key for verification is
already installed.
If you install Proxmox VE on top of Debian, download and install
the key with the following commands:
 # wget https://enterprise.proxmox.com/debian/proxmox-release-bookworm.gpg -O /etc/apt/trusted.gpg.d/proxmox-release-bookworm.gpg
Verify the checksum afterwards with the sha512sum CLI tool:
sha512sum /etc/apt/trusted.gpg.d/proxmox-release-bookworm.gpg
7da6fe34168adc6e479327ba517796d4702fa2f8b4f0a9833f5ea6e6b48f6507a6da403a274fe201595edc86a84463d50383d07f64bdde2e3658108db7d6dc87 /etc/apt/trusted.gpg.d/proxmox-release-bookworm.gpg
or the md5sum CLI tool:
md5sum /etc/apt/trusted.gpg.d/proxmox-release-bookworm.gpg
41558dc019ef90bd0f6067644a51cf5b /etc/apt/trusted.gpg.d/proxmox-release-bookworm.gpg

3.2. System Software Updates

Proxmox provides updates on a regular basis for all repositories. To install
updates use the web-based GUI or the following CLI commands:
apt-get update
apt-get dist-upgrade
Note
The APT package management system is very flexible and provides many
features, see man apt-get, or [Hertzog13] for additional information.

Tip
Regular updates are essential to get the latest patches and security
related fixes. Major system upgrades are announced in the Proxmox VE Community Forum.

3.3. Firmware Updates

Firmware updates from this chapter should be applied when running Proxmox VE on a
bare-metal server. Whether configuring firmware updates is appropriate within
guests, e.g. when using device pass-through, depends strongly on your setup and
is therefore out of scope.
In addition to regular software updates, firmware updates are also important
for reliable and secure operation.
When obtaining and applying firmware updates, a combination of available options
is recommended to get them as early as possible or at all.
The term firmware is usually divided linguistically into microcode (for CPUs)
and firmware (for other devices).
3.3.1. Persistent Firmware

This section is suitable for all devices. Updated microcode, which is usually
included in a BIOS/UEFI update, is stored on the motherboard, whereas other
firmware is stored on the respective device. This persistent method is
especially important for the CPU, as it enables the earliest possible regular
loading of the updated microcode at boot time.
Caution
With some updates, such as for BIOS/UEFI or storage controller, the
device configuration could be reset. Please follow the vendor’s instructions
carefully and back up the current configuration.

Please check with your vendor which update methods are available.
	
Convenient update methods for servers can include Dell’s Lifecycle Manager or
Service Packs from HPE.

	
Sometimes there are Linux utilities available as well. Examples are
mlxup for NVIDIA
ConnectX or
bnxtnvm/niccli
for Broadcom network cards.

	
LVFS could also be an option if there is a cooperation with
a vendor and
supported hardware in use. The technical
requirement for this is that the system was manufactured after 2014, is booted
via UEFI and the easiest way is to mount the EFI partition from which you boot
(mount /dev/disk/by-partuuid/<from efibootmgr -v> /boot/efi) before installing
fwupd.

Tip
If the update instructions require a host reboot, make sure that it can be
done safely. See also Node Maintenance.

3.3.2. Runtime Firmware Files

This method stores firmware on the Proxmox VE operating system and will pass it to a
device if its persisted firmware is less
recent. It is supported by devices such as network and graphics cards, but not
by those that rely on persisted firmware such as the motherboard and hard disks.
In Proxmox VE the package pve-firmware is already installed by default. Therefore,
with the normal system updates (APT), included
firmware of common hardware is automatically kept up to date.
An additional Debian Firmware Repository
exists, but is not configured by default.
If you try to install an additional firmware package but it conflicts, APT will
abort the installation. Perhaps the particular firmware can be obtained in
another way.

3.3.3. CPU Microcode Updates

Microcode updates are intended to fix found security vulnerabilities and other
serious CPU bugs. While the CPU performance can be affected, a patched microcode
is usually still more performant than an unpatched microcode where the kernel
itself has to do mitigations. Depending on the CPU type, it is possible that
performance results of the flawed factory state can no longer be achieved
without knowingly running the CPU in an unsafe state.
To get an overview of present CPU vulnerabilities and their mitigations, run
lscpu. Current real-world known vulnerabilities can only show up if the
Proxmox VE host is up to date, its version not
end of life, and has at least been rebooted since the
last kernel update.
Besides the recommended microcode update via
persistent BIOS/UEFI updates, there is also
an independent method via Early OS Microcode Updates. It is convenient to use
and also quite helpful when the motherboard vendor no longer provides BIOS/UEFI
updates. Regardless of the method in use, a reboot is always needed to apply a
microcode update.
Set up Early OS Microcode Updates

To set up microcode updates that are applied early on boot by the Linux kernel,
you need to:
	
Enable the Debian Firmware Repository

	
Get the latest available packages apt update (or use the web interface,
 under Node → Updates)

	
Install the CPU-vendor specific microcode package:

	
For Intel CPUs: apt install intel-microcode

	
For AMD CPUs: apt install amd64-microcode

	
Reboot the Proxmox VE host

Any future microcode update will also require a reboot to be loaded.

Microcode Version

To get the current running microcode revision for comparison or debugging
purposes:
grep microcode /proc/cpuinfo | uniq
microcode : 0xf0
A microcode package has updates for many different CPUs. But updates
specifically for your CPU might not come often. So, just looking at the date on
the package won’t tell you when the company actually released an update for your
specific CPU.
If you’ve installed a new microcode package and rebooted your Proxmox VE host, and
this new microcode is newer than both, the version baked into the CPU and the
one from the motherboard’s firmware, you’ll see a message in the system log
saying "microcode updated early".
dmesg | grep microcode
[0.000000] microcode: microcode updated early to revision 0xf0, date = 2021-11-12
[0.896580] microcode: Microcode Update Driver: v2.2.

Troubleshooting

For debugging purposes, the set up Early OS Microcode Update applied regularly
at system boot can be temporarily disabled as follows:
	
make sure that the host can be rebooted safely

	
reboot the host to get to the GRUB menu (hold SHIFT if it is hidden)

	
at the desired Proxmox VE boot entry press E

	
go to the line which starts with linux and append separated by a space
dis_ucode_ldr

	
press CTRL-X to boot this time without an Early OS Microcode Update

If a problem related to a recent microcode update is suspected, a package
downgrade should be considered instead of package removal
(apt purge <intel-microcode|amd64-microcode>). Otherwise, a too old
persisted microcode might be loaded, even
though a more recent one would run without problems.
A downgrade is possible if an earlier microcode package version is
available in the Debian repository, as shown in this example:
apt list -a intel-microcode
Listing... Done
intel-microcode/stable-security,now 3.20230808.1~deb12u1 amd64 [installed]
intel-microcode/stable 3.20230512.1 amd64
apt install intel-microcode=3.202305*
...
Selected version '3.20230512.1' (Debian:12.1/stable [amd64]) for 'intel-microcode'
...
dpkg: warning: downgrading intel-microcode from 3.20230808.1~deb12u1 to 3.20230512.1
...
intel-microcode: microcode will be updated at next boot
...
Make sure (again) that the host can be rebooted
safely. To apply an older microcode
potentially included in the microcode package for your CPU type, reboot now.
Tip
It makes sense to hold the downgraded package for a while and try more recent
versions again at a later time. Even if the package version is the same in the
future, system updates may have fixed the experienced problem in the meantime.
apt-mark hold intel-microcode
intel-microcode set on hold.
apt-mark unhold intel-microcode
apt update
apt upgrade

3.4. Network Configuration

Proxmox VE is using the Linux network stack. This provides a lot of flexibility on
how to set up the network on the Proxmox VE nodes. The configuration can be done
either via the GUI, or by manually editing the file /etc/network/interfaces,
which contains the whole network configuration. The interfaces(5) manual
page contains the complete format description. All Proxmox VE tools try hard to keep
direct user modifications, but using the GUI is still preferable, because it
protects you from errors.
A vmbr interface is needed to connect guests to the underlying physical
network. They are a Linux bridge which can be thought of as a virtual switch
to which the guests and physical interfaces are connected to. This section
provides some examples on how the network can be set up to accomodate different
use cases like redundancy with a bond,
vlans or
routed and
NAT setups.
The Software Defined Network is an option for more complex
virtual networks in Proxmox VE clusters.
Warning
It’s discouraged to use the traditional Debian tools ifup and ifdown
if unsure, as they have some pitfalls like interupting all guest traffic on
ifdown vmbrX but not reconnecting those guest again when doing ifup on the
same bridge later.

3.4.1. Apply Network Changes

Proxmox VE does not write changes directly to /etc/network/interfaces. Instead, we
write into a temporary file called /etc/network/interfaces.new, this way you
can do many related changes at once. This also allows to ensure your changes
are correct before applying, as a wrong network configuration may render a node
inaccessible.
Live-Reload Network with ifupdown2

With the recommended ifupdown2 package (default for new installations since
Proxmox VE 7.0), it is possible to apply network configuration changes without a
reboot. If you change the network configuration via the GUI, you can click the
Apply Configuration button. This will move changes from the staging
interfaces.new file to /etc/network/interfaces and apply them live.
If you made manual changes directly to the /etc/network/interfaces file, you
can apply them by running ifreload -a
Note
If you installed Proxmox VE on top of Debian, or upgraded to Proxmox VE 7.0 from an
older Proxmox VE installation, make sure ifupdown2 is installed: apt install
ifupdown2

Reboot Node to Apply

Another way to apply a new network configuration is to reboot the node.
In that case the systemd service pvenetcommit will activate the staging
interfaces.new file before the networking service will apply that
configuration.

3.4.2. Naming Conventions

We currently use the following naming conventions for device names:
	
Ethernet devices: en*, systemd network interface names. This naming scheme is
 used for new Proxmox VE installations since version 5.0.

	
Ethernet devices: eth[N], where 0 ≤ N (eth0, eth1, …) This naming
scheme is used for Proxmox VE hosts which were installed before the 5.0
release. When upgrading to 5.0, the names are kept as-is.

	
Bridge names: vmbr[N], where 0 ≤ N ≤ 4094 (vmbr0 - vmbr4094)

	
Bonds: bond[N], where 0 ≤ N (bond0, bond1, …)

	
VLANs: Simply add the VLAN number to the device name,
 separated by a period (eno1.50, bond1.30)

This makes it easier to debug networks problems, because the device
name implies the device type.
Systemd Network Interface Names

Systemd defines a versioned naming scheme for network device names. The
scheme uses the two-character prefix en for Ethernet network devices. The
next characters depends on the device driver, device location and other
attributes. Some possible patterns are:
	
o<index>[n<phys_port_name>|d<dev_port>] — devices on board

	
s<slot>[f<function>][n<phys_port_name>|d<dev_port>] — devices by hotplug id

	
[P<domain>]p<bus>s<slot>[f<function>][n<phys_port_name>|d<dev_port>] —
devices by bus id

	
x<MAC> — devices by MAC address

Some examples for the most common patterns are:
	
eno1 — is the first on-board NIC

	
enp3s0f1 — is function 1 of the NIC on PCI bus 3, slot 0

For a full list of possible device name patterns, see the

systemd.net-naming-scheme(7) manpage.
A new version of systemd may define a new version of the network device naming
scheme, which it then uses by default. Consequently, updating to a newer
systemd version, for example during a major Proxmox VE upgrade, can change the names
of network devices and require adjusting the network configuration. To avoid
name changes due to a new version of the naming scheme, you can manually pin a
particular naming scheme version (see
below).
However, even with a pinned naming scheme version, network device names can
still change due to kernel or driver updates. In order to avoid name changes
for a particular network device altogether, you can manually override its name
using a link file (see below).
For more information on network interface names, see
Predictable Network Interface
Names.

Pinning a specific naming scheme version

You can pin a specific version of the naming scheme for network devices by
adding the net.naming-scheme=<version> parameter to the
kernel command line. For a list of naming
scheme versions, see the

systemd.net-naming-scheme(7) manpage.
For example, to pin the version v252, which is the latest naming scheme
version for a fresh Proxmox VE 8.0 installation, add the following kernel
command-line parameter:
net.naming-scheme=v252
See also this section on editing the kernel
command line. You need to reboot for the changes to take effect.

Overriding network device names

You can manually assign a name to a particular network device using a custom
systemd.link
file. This overrides the name that would be assigned according to the latest
network device naming scheme. This way, you can avoid naming changes due to
kernel updates, driver updates or newer versions of the naming scheme.
Custom link files should be placed in /etc/systemd/network/ and named
<n>-<id>.link, where n is a priority smaller than 99 and id is some
identifier. A link file has two sections: [Match] determines which interfaces
the file will apply to; [Link] determines how these interfaces should be
configured, including their naming.
To assign a name to a particular network device, you need a way to uniquely and
permanently identify that device in the [Match] section. One possibility is
to match the device’s MAC address using the MACAddress option, as it is
unlikely to change. Then, you can assign a name using the Name option in the
[Link] section.
For example, to assign the name enwan0 to the device with MAC address
aa:bb:cc:dd:ee:ff, create a file /etc/systemd/network/10-enwan0.link with
the following contents:
[Match]
MACAddress=aa:bb:cc:dd:ee:ff

[Link]
Name=enwan0
Do not forget to adjust /etc/network/interfaces to use the new name.
You need to reboot the node for the change to take effect.
Note
It is recommended to assign a name starting with en or eth so that
Proxmox VE recognizes the interface as a physical network device which can then be
configured via the GUI. Also, you should ensure that the name will not clash
with other interface names in the future. One possibility is to assign a name
that does not match any name pattern that systemd uses for network interfaces
(see above), such as enwan0 in the
example above.

For more information on link files, see the
systemd.link(5)
manpage.

3.4.3. Choosing a network configuration

Depending on your current network organization and your resources you can
choose either a bridged, routed, or masquerading networking setup.
Proxmox VE server in a private LAN, using an external gateway to reach the internet

The Bridged model makes the most sense in this case, and this is also
the default mode on new Proxmox VE installations.
Each of your Guest system will have a virtual interface attached to the
Proxmox VE bridge. This is similar in effect to having the Guest network card
directly connected to a new switch on your LAN, the Proxmox VE host playing the role
of the switch.

Proxmox VE server at hosting provider, with public IP ranges for Guests

For this setup, you can use either a Bridged or Routed model, depending on
what your provider allows.

Proxmox VE server at hosting provider, with a single public IP address

In that case the only way to get outgoing network accesses for your guest
systems is to use Masquerading. For incoming network access to your guests,
you will need to configure Port Forwarding.
For further flexibility, you can configure
VLANs (IEEE 802.1q) and network bonding, also known as "link
aggregation". That way it is possible to build complex and flexible
virtual networks.

3.4.4. Default Configuration using a Bridge

[image: default-network-setup-bridge.svg]
Bridges are like physical network switches implemented in software.
All virtual guests can share a single bridge, or you can create multiple
bridges to separate network domains. Each host can have up to 4094 bridges.
The installation program creates a single bridge named vmbr0, which
is connected to the first Ethernet card. The corresponding
configuration in /etc/network/interfaces might look like this:
auto lo
iface lo inet loopback

iface eno1 inet manual

auto vmbr0
iface vmbr0 inet static
 address 192.168.10.2/24
 gateway 192.168.10.1
 bridge-ports eno1
 bridge-stp off
 bridge-fd 0
Virtual machines behave as if they were directly connected to the
physical network. The network, in turn, sees each virtual machine as
having its own MAC, even though there is only one network cable
connecting all of these VMs to the network.

3.4.5. Routed Configuration

Most hosting providers do not support the above setup. For security
reasons, they disable networking as soon as they detect multiple MAC
addresses on a single interface.
Tip
Some providers allow you to register additional MACs through their
management interface. This avoids the problem, but can be clumsy to
configure because you need to register a MAC for each of your VMs.

You can avoid the problem by “routing” all traffic via a single
interface. This makes sure that all network packets use the same MAC
address.
[image: default-network-setup-routed.svg]
A common scenario is that you have a public IP (assume 198.51.100.5
for this example), and an additional IP block for your VMs
(203.0.113.16/28). We recommend the following setup for such
situations:
auto lo
iface lo inet loopback

auto eno0
iface eno0 inet static
 address 198.51.100.5/29
 gateway 198.51.100.1
 post-up echo 1 > /proc/sys/net/ipv4/ip_forward
 post-up echo 1 > /proc/sys/net/ipv4/conf/eno0/proxy_arp

auto vmbr0
iface vmbr0 inet static
 address 203.0.113.17/28
 bridge-ports none
 bridge-stp off
 bridge-fd 0

3.4.6. Masquerading (NAT) with iptables

Masquerading allows guests having only a private IP address to access the
network by using the host IP address for outgoing traffic. Each outgoing
packet is rewritten by iptables to appear as originating from the host,
and responses are rewritten accordingly to be routed to the original sender.
auto lo
iface lo inet loopback

auto eno1
#real IP address
iface eno1 inet static
 address 198.51.100.5/24
 gateway 198.51.100.1

auto vmbr0
#private sub network
iface vmbr0 inet static
 address 10.10.10.1/24
 bridge-ports none
 bridge-stp off
 bridge-fd 0

 post-up echo 1 > /proc/sys/net/ipv4/ip_forward
 post-up iptables -t nat -A POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE
 post-down iptables -t nat -D POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE
Note
In some masquerade setups with firewall enabled, conntrack zones might be
needed for outgoing connections. Otherwise the firewall could block outgoing
connections since they will prefer the POSTROUTING of the VM bridge (and not
MASQUERADE).

Adding these lines in the /etc/network/interfaces can fix this problem:
post-up iptables -t raw -I PREROUTING -i fwbr+ -j CT --zone 1
post-down iptables -t raw -D PREROUTING -i fwbr+ -j CT --zone 1
For more information about this, refer to the following links:
Netfilter Packet Flow
Patch on netdev-list introducing conntrack zones
Blog post with a good explanation by using TRACE in the raw table

3.4.7. Linux Bond

Bonding (also called NIC teaming or Link Aggregation) is a technique
for binding multiple NIC’s to a single network device. It is possible
to achieve different goals, like make the network fault-tolerant,
increase the performance or both together.
High-speed hardware like Fibre Channel and the associated switching
hardware can be quite expensive. By doing link aggregation, two NICs
can appear as one logical interface, resulting in double speed. This
is a native Linux kernel feature that is supported by most
switches. If your nodes have multiple Ethernet ports, you can
distribute your points of failure by running network cables to
different switches and the bonded connection will failover to one
cable or the other in case of network trouble.
Aggregated links can improve live-migration delays and improve the
speed of replication of data between Proxmox VE Cluster nodes.
There are 7 modes for bonding:
	
Round-robin (balance-rr): Transmit network packets in sequential
order from the first available network interface (NIC) slave through
the last. This mode provides load balancing and fault tolerance.

	
Active-backup (active-backup): Only one NIC slave in the bond is
active. A different slave becomes active if, and only if, the active
slave fails. The single logical bonded interface’s MAC address is
externally visible on only one NIC (port) to avoid distortion in the
network switch. This mode provides fault tolerance.

	
XOR (balance-xor): Transmit network packets based on [(source MAC
address XOR’d with destination MAC address) modulo NIC slave
count]. This selects the same NIC slave for each destination MAC
address. This mode provides load balancing and fault tolerance.

	
Broadcast (broadcast): Transmit network packets on all slave
network interfaces. This mode provides fault tolerance.

	
IEEE 802.3ad Dynamic link aggregation (802.3ad)(LACP): Creates
aggregation groups that share the same speed and duplex
settings. Utilizes all slave network interfaces in the active
aggregator group according to the 802.3ad specification.

	
Adaptive transmit load balancing (balance-tlb): Linux bonding
driver mode that does not require any special network-switch
support. The outgoing network packet traffic is distributed according
to the current load (computed relative to the speed) on each network
interface slave. Incoming traffic is received by one currently
designated slave network interface. If this receiving slave fails,
another slave takes over the MAC address of the failed receiving
slave.

	
Adaptive load balancing (balance-alb): Includes balance-tlb plus receive
load balancing (rlb) for IPV4 traffic, and does not require any
special network switch support. The receive load balancing is achieved
by ARP negotiation. The bonding driver intercepts the ARP Replies sent
by the local system on their way out and overwrites the source
hardware address with the unique hardware address of one of the NIC
slaves in the single logical bonded interface such that different
network-peers use different MAC addresses for their network packet
traffic.

If your switch support the LACP (IEEE 802.3ad) protocol then we recommend using
the corresponding bonding mode (802.3ad). Otherwise you should generally use the
active-backup mode.
For the cluster network (Corosync) we recommend configuring it with multiple
networks. Corosync does not need a bond for network reduncancy as it can switch
between networks by itself, if one becomes unusable.
The following bond configuration can be used as distributed/shared
storage network. The benefit would be that you get more speed and the
network will be fault-tolerant.
Example: Use bond with fixed IP address.

auto lo
iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

iface eno3 inet manual

auto bond0
iface bond0 inet static
 bond-slaves eno1 eno2
 address 192.168.1.2/24
 bond-miimon 100
 bond-mode 802.3ad
 bond-xmit-hash-policy layer2+3

auto vmbr0
iface vmbr0 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1
 bridge-ports eno3
 bridge-stp off
 bridge-fd 0

[image: default-network-setup-bond.svg]
Another possibility it to use the bond directly as bridge port.
This can be used to make the guest network fault-tolerant.
Example: Use a bond as bridge port.

auto lo
iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

auto bond0
iface bond0 inet manual
 bond-slaves eno1 eno2
 bond-miimon 100
 bond-mode 802.3ad
 bond-xmit-hash-policy layer2+3

auto vmbr0
iface vmbr0 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1
 bridge-ports bond0
 bridge-stp off
 bridge-fd 0

3.4.8. VLAN 802.1Q

A virtual LAN (VLAN) is a broadcast domain that is partitioned and
isolated in the network at layer two. So it is possible to have
multiple networks (4096) in a physical network, each independent of
the other ones.
Each VLAN network is identified by a number often called tag.
Network packages are then tagged to identify which virtual network
they belong to.
VLAN for Guest Networks

Proxmox VE supports this setup out of the box. You can specify the VLAN tag
when you create a VM. The VLAN tag is part of the guest network
configuration. The networking layer supports different modes to
implement VLANs, depending on the bridge configuration:
	
VLAN awareness on the Linux bridge:
In this case, each guest’s virtual network card is assigned to a VLAN tag,
which is transparently supported by the Linux bridge.
Trunk mode is also possible, but that makes configuration
in the guest necessary.

	
"traditional" VLAN on the Linux bridge:
In contrast to the VLAN awareness method, this method is not transparent
and creates a VLAN device with associated bridge for each VLAN.
That is, creating a guest on VLAN 5 for example, would create two
interfaces eno1.5 and vmbr0v5, which would remain until a reboot occurs.

	
Open vSwitch VLAN:
This mode uses the OVS VLAN feature.

	
Guest configured VLAN:
VLANs are assigned inside the guest. In this case, the setup is
completely done inside the guest and can not be influenced from the
outside. The benefit is that you can use more than one VLAN on a
single virtual NIC.

VLAN on the Host

To allow host communication with an isolated network. It is possible
to apply VLAN tags to any network device (NIC, Bond, Bridge). In
general, you should configure the VLAN on the interface with the least
abstraction layers between itself and the physical NIC.
For example, in a default configuration where you want to place
the host management address on a separate VLAN.
Example: Use VLAN 5 for the Proxmox VE management IP with traditional Linux bridge.

auto lo
iface lo inet loopback

iface eno1 inet manual

iface eno1.5 inet manual

auto vmbr0v5
iface vmbr0v5 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1
 bridge-ports eno1.5
 bridge-stp off
 bridge-fd 0

auto vmbr0
iface vmbr0 inet manual
 bridge-ports eno1
 bridge-stp off
 bridge-fd 0

Example: Use VLAN 5 for the Proxmox VE management IP with VLAN aware Linux bridge.

auto lo
iface lo inet loopback

iface eno1 inet manual

auto vmbr0.5
iface vmbr0.5 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1

auto vmbr0
iface vmbr0 inet manual
 bridge-ports eno1
 bridge-stp off
 bridge-fd 0
 bridge-vlan-aware yes
 bridge-vids 2-4094

The next example is the same setup but a bond is used to
make this network fail-safe.
Example: Use VLAN 5 with bond0 for the Proxmox VE management IP with traditional Linux bridge.

auto lo
iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

auto bond0
iface bond0 inet manual
 bond-slaves eno1 eno2
 bond-miimon 100
 bond-mode 802.3ad
 bond-xmit-hash-policy layer2+3

iface bond0.5 inet manual

auto vmbr0v5
iface vmbr0v5 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1
 bridge-ports bond0.5
 bridge-stp off
 bridge-fd 0

auto vmbr0
iface vmbr0 inet manual
 bridge-ports bond0
 bridge-stp off
 bridge-fd 0

3.4.9. Disabling IPv6 on the Node

Proxmox VE works correctly in all environments, irrespective of whether IPv6 is
deployed or not. We recommend leaving all settings at the provided defaults.
Should you still need to disable support for IPv6 on your node, do so by
creating an appropriate sysctl.conf (5) snippet file and setting the proper
sysctls,
for example adding /etc/sysctl.d/disable-ipv6.conf with content:
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
This method is preferred to disabling the loading of the IPv6 module on the
kernel commandline.

3.4.10. Disabling MAC Learning on a Bridge

By default, MAC learning is enabled on a bridge to ensure a smooth experience
with virtual guests and their networks.
But in some environments this can be undesired. Since Proxmox VE 7.3 you can disable
MAC learning on the bridge by setting the ‘bridge-disable-mac-learning 1`
configuration on a bridge in `/etc/network/interfaces’, for example:
...

auto vmbr0
iface vmbr0 inet static
 address 10.10.10.2/24
 gateway 10.10.10.1
 bridge-ports ens18
 bridge-stp off
 bridge-fd 0
 bridge-disable-mac-learning 1
Once enabled, Proxmox VE will manually add the configured MAC address from VMs and
Containers to the bridges forwarding database to ensure that guest can still
use the network - but only when they are using their actual MAC address.

3.5. Time Synchronization

The Proxmox VE cluster stack itself relies heavily on the fact that all
the nodes have precisely synchronized time. Some other components,
like Ceph, also won’t work properly if the local time on all nodes is
not in sync.
Time synchronization between nodes can be achieved using the “Network
Time Protocol” (NTP). As of Proxmox VE 7, chrony is used as the default
NTP daemon, while Proxmox VE 6 uses systemd-timesyncd. Both come preconfigured to
use a set of public servers.
Important
If you upgrade your system to Proxmox VE 7, it is recommended that you
manually install either chrony, ntp or openntpd.

3.5.1. Using Custom NTP Servers

In some cases, it might be desired to use non-default NTP
servers. For example, if your Proxmox VE nodes do not have access to the
public internet due to restrictive firewall rules, you
need to set up local NTP servers and tell the NTP daemon to use
them.
For systems using chrony:

Specify which servers chrony should use in /etc/chrony/chrony.conf:
server ntp1.example.com iburst
server ntp2.example.com iburst
server ntp3.example.com iburst
Restart chrony:
systemctl restart chronyd
Check the journal to confirm that the newly configured NTP servers are being
used:
journalctl --since -1h -u chrony
...
Aug 26 13:00:09 node1 systemd[1]: Started chrony, an NTP client/server.
Aug 26 13:00:15 node1 chronyd[4873]: Selected source 10.0.0.1 (ntp1.example.com)
Aug 26 13:00:15 node1 chronyd[4873]: System clock TAI offset set to 37 seconds
...

For systems using systemd-timesyncd:

Specify which servers systemd-timesyncd should use in
/etc/systemd/timesyncd.conf:
[Time]
NTP=ntp1.example.com ntp2.example.com ntp3.example.com ntp4.example.com
Then, restart the synchronization service (systemctl restart
systemd-timesyncd), and verify that your newly configured NTP servers are in
use by checking the journal (journalctl --since -1h -u systemd-timesyncd):
...
Oct 07 14:58:36 node1 systemd[1]: Stopping Network Time Synchronization...
Oct 07 14:58:36 node1 systemd[1]: Starting Network Time Synchronization...
Oct 07 14:58:36 node1 systemd[1]: Started Network Time Synchronization.
Oct 07 14:58:36 node1 systemd-timesyncd[13514]: Using NTP server 10.0.0.1:123 (ntp1.example.com).
Oct 07 14:58:36 node1 systemd-timesyncd[13514]: interval/delta/delay/jitter/drift 64s/-0.002s/0.020s/0.000s/-31ppm
...

3.6. External Metric Server

[image: screenshot/gui-datacenter-metric-server-list.png]
In Proxmox VE, you can define external metric servers, which will periodically
receive various stats about your hosts, virtual guests and storages.
Currently supported are:
	
Graphite (see https://graphiteapp.org)

	
InfluxDB (see https://www.influxdata.com/time-series-platform/influxdb/)

The external metric server definitions are saved in /etc/pve/status.cfg, and
can be edited through the web interface.
3.6.1. Graphite server configuration

[image: screenshot/gui-datacenter-metric-server-graphite.png]
The default port is set to 2003 and the default graphite path is proxmox.
By default, Proxmox VE sends the data over UDP, so the graphite server has to be
configured to accept this. Here the maximum transmission unit (MTU) can be
configured for environments not using the standard 1500 MTU.
You can also configure the plugin to use TCP. In order not to block the
important pvestatd statistic collection daemon, a timeout is required to cope
with network problems.

3.6.2. Influxdb plugin configuration

[image: screenshot/gui-datacenter-metric-server-influxdb.png]
Proxmox VE sends the data over UDP, so the influxdb server has to be configured for
this. The MTU can also be configured here, if necessary.
Here is an example configuration for influxdb (on your influxdb server):
[[udp]]
 enabled = true
 bind-address = "0.0.0.0:8089"
 database = "proxmox"
 batch-size = 1000
 batch-timeout = "1s"
With this configuration, your server listens on all IP addresses on port 8089,
and writes the data in the proxmox database
Alternatively, the plugin can be configured to use the http(s) API of InfluxDB 2.x.
InfluxDB 1.8.x does contain a forwards compatible API endpoint for this v2 API.
To use it, set influxdbproto to http or https (depending on your configuration).
By default, Proxmox VE uses the organization proxmox and the bucket/db proxmox
(They can be set with the configuration organization and bucket respectively).
Since InfluxDB’s v2 API is only available with authentication, you have
to generate a token that can write into the correct bucket and set it.
In the v2 compatible API of 1.8.x, you can use user:password as token
(if required), and can omit the organization since that has no meaning in InfluxDB 1.x.
You can also set the HTTP Timeout (default is 1s) with the timeout setting,
as well as the maximum batch size (default 25000000 bytes) with the
max-body-size setting (this corresponds to the InfluxDB setting with the
same name).

3.7. Disk Health Monitoring

Although a robust and redundant storage is recommended,
it can be very helpful to monitor the health of your local disks.
Starting with Proxmox VE 4.3, the package smartmontools [1]
is installed and required. This is a set of tools to monitor and control
the S.M.A.R.T. system for local hard disks.
You can get the status of a disk by issuing the following command:
smartctl -a /dev/sdX
where /dev/sdX is the path to one of your local disks.
If the output says:
SMART support is: Disabled
you can enable it with the command:
smartctl -s on /dev/sdX
For more information on how to use smartctl, please see man smartctl.
By default, smartmontools daemon smartd is active and enabled, and scans
the disks under /dev/sdX and /dev/hdX every 30 minutes for errors and warnings, and sends an
e-mail to root if it detects a problem.
For more information about how to configure smartd, please see man smartd and
man smartd.conf.
If you use your hard disks with a hardware raid controller, there are most likely tools
to monitor the disks in the raid array and the array itself. For more information about this,
please refer to the vendor of your raid controller.

[1] smartmontools homepage https://www.smartmontools.org

3.8. Logical Volume Manager (LVM)

Most people install Proxmox VE directly on a local disk. The Proxmox VE
installation CD offers several options for local disk management, and
the current default setup uses LVM. The installer lets you select a
single disk for such setup, and uses that disk as physical volume for
the Volume Group (VG) pve. The following output is from a
test installation using a small 8GB disk:
pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda3 pve lvm2 a-- 7.87g 876.00m

vgs
 VG #PV #LV #SN Attr VSize VFree
 pve 1 3 0 wz--n- 7.87g 876.00m
The installer allocates three Logical Volumes (LV) inside this
VG:
lvs
 LV VG Attr LSize Pool Origin Data% Meta%
 data pve twi-a-tz-- 4.38g 0.00 0.63
 root pve -wi-ao---- 1.75g
 swap pve -wi-ao---- 896.00m
	
root

	
Formatted as ext4, and contains the operating system.

	
swap

	
Swap partition

	
data

	
This volume uses LVM-thin, and is used to store VM
images. LVM-thin is preferable for this task, because it offers
efficient support for snapshots and clones.

For Proxmox VE versions up to 4.1, the installer creates a standard logical
volume called “data”, which is mounted at /var/lib/vz.
Starting from version 4.2, the logical volume “data” is a LVM-thin pool,
used to store block based guest images, and /var/lib/vz is simply a
directory on the root file system.
3.8.1. Hardware

We highly recommend to use a hardware RAID controller (with BBU) for
such setups. This increases performance, provides redundancy, and make
disk replacements easier (hot-pluggable).
LVM itself does not need any special hardware, and memory requirements
are very low.

3.8.2. Bootloader

We install two boot loaders by default. The first partition contains
the standard GRUB boot loader. The second partition is an EFI System
Partition (ESP), which makes it possible to boot on EFI systems and to
apply persistent firmware updates from the
user space.

3.8.3. Creating a Volume Group

Let’s assume we have an empty disk /dev/sdb, onto which we want to
create a volume group named “vmdata”.
Caution
Please note that the following commands will destroy all
existing data on /dev/sdb.

First create a partition.
sgdisk -N 1 /dev/sdb
Create a Physical Volume (PV) without confirmation and 250K
metadatasize.
pvcreate --metadatasize 250k -y -ff /dev/sdb1
Create a volume group named “vmdata” on /dev/sdb1
vgcreate vmdata /dev/sdb1

3.8.4. Creating an extra LV for /var/lib/vz

This can be easily done by creating a new thin LV.
lvcreate -n <Name> -V <Size[M,G,T]> <VG>/<LVThin_pool>
A real world example:
lvcreate -n vz -V 10G pve/data
Now a filesystem must be created on the LV.
mkfs.ext4 /dev/pve/vz
At last this has to be mounted.
Warning
be sure that /var/lib/vz is empty. On a default
installation it’s not.

To make it always accessible add the following line in /etc/fstab.
echo '/dev/pve/vz /var/lib/vz ext4 defaults 0 2' >> /etc/fstab

3.8.5. Resizing the thin pool

Resize the LV and the metadata pool with the following command:
lvresize --size +<size[\M,G,T]> --poolmetadatasize +<size[\M,G]> <VG>/<LVThin_pool>
Note
When extending the data pool, the metadata pool must also be
extended.

3.8.6. Create a LVM-thin pool

A thin pool has to be created on top of a volume group.
How to create a volume group see Section LVM.
lvcreate -L 80G -T -n vmstore vmdata

3.9. ZFS on Linux

ZFS is a combined file system and logical volume manager designed by
Sun Microsystems. Starting with Proxmox VE 3.4, the native Linux
kernel port of the ZFS file system is introduced as optional
file system and also as an additional selection for the root
file system. There is no need for manually compile ZFS modules - all
packages are included.
By using ZFS, its possible to achieve maximum enterprise features with
low budget hardware, but also high performance systems by leveraging
SSD caching or even SSD only setups. ZFS can replace cost intense
hardware raid cards by moderate CPU and memory load combined with easy
management.
General ZFS advantages
	
Easy configuration and management with Proxmox VE GUI and CLI.

	
Reliable

	
Protection against data corruption

	
Data compression on file system level

	
Snapshots

	
Copy-on-write clone

	
Various raid levels: RAID0, RAID1, RAID10, RAIDZ-1, RAIDZ-2, RAIDZ-3,
dRAID, dRAID2, dRAID3

	
Can use SSD for cache

	
Self healing

	
Continuous integrity checking

	
Designed for high storage capacities

	
Asynchronous replication over network

	
Open Source

	
Encryption

	
…

3.9.1. Hardware

ZFS depends heavily on memory, so you need at least 8GB to start. In
practice, use as much as you can get for your hardware/budget. To prevent
data corruption, we recommend the use of high quality ECC RAM.
If you use a dedicated cache and/or log disk, you should use an
enterprise class SSD. This can
increase the overall performance significantly.
Important
Do not use ZFS on top of a hardware RAID controller which has its
own cache management. ZFS needs to communicate directly with the disks. An
HBA adapter or something like an LSI controller flashed in “IT” mode is more
appropriate.

If you are experimenting with an installation of Proxmox VE inside a VM
(Nested Virtualization), don’t use virtio for disks of that VM,
as they are not supported by ZFS. Use IDE or SCSI instead (also works
with the virtio SCSI controller type).

3.9.2. Installation as Root File System

When you install using the Proxmox VE installer, you can choose ZFS for the
root file system. You need to select the RAID type at installation
time:
	

RAID0

	

Also called “striping”. The capacity of such volume is the sum
of the capacities of all disks. But RAID0 does not add any redundancy,
so the failure of a single drive makes the volume unusable.

	

RAID1

	

Also called “mirroring”. Data is written identically to all
disks. This mode requires at least 2 disks with the same size. The
resulting capacity is that of a single disk.

	

RAID10

	

A combination of RAID0 and RAID1. Requires at least 4 disks.

	

RAIDZ-1

	

A variation on RAID-5, single parity. Requires at least 3 disks.

	

RAIDZ-2

	

A variation on RAID-5, double parity. Requires at least 4 disks.

	

RAIDZ-3

	

A variation on RAID-5, triple parity. Requires at least 5 disks.

The installer automatically partitions the disks, creates a ZFS pool
called rpool, and installs the root file system on the ZFS subvolume
rpool/ROOT/pve-1.
Another subvolume called rpool/data is created to store VM
images. In order to use that with the Proxmox VE tools, the installer
creates the following configuration entry in /etc/pve/storage.cfg:
zfspool: local-zfs
 pool rpool/data
 sparse
 content images,rootdir
After installation, you can view your ZFS pool status using the
zpool command:
zpool status
 pool: rpool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 sda2 ONLINE 0 0 0
 sdb2 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 sdc ONLINE 0 0 0
 sdd ONLINE 0 0 0

errors: No known data errors
The zfs command is used configure and manage your ZFS file
systems. The following command lists all file systems after
installation:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 4.94G 7.68T 96K /rpool
rpool/ROOT 702M 7.68T 96K /rpool/ROOT
rpool/ROOT/pve-1 702M 7.68T 702M /
rpool/data 96K 7.68T 96K /rpool/data
rpool/swap 4.25G 7.69T 64K -

3.9.3. ZFS RAID Level Considerations

There are a few factors to take into consideration when choosing the layout of
a ZFS pool. The basic building block of a ZFS pool is the virtual device, or
vdev. All vdevs in a pool are used equally and the data is striped among them
(RAID0). Check the zpoolconcepts(7) manpage for more details on vdevs.
Performance

Each vdev type has different performance behaviors. The two
parameters of interest are the IOPS (Input/Output Operations per Second) and
the bandwidth with which data can be written or read.
A mirror vdev (RAID1) will approximately behave like a single disk in regard
to both parameters when writing data. When reading data the performance will
scale linearly with the number of disks in the mirror.
A common situation is to have 4 disks. When setting it up as 2 mirror vdevs
(RAID10) the pool will have the write characteristics as two single disks in
regard to IOPS and bandwidth. For read operations it will resemble 4 single
disks.
A RAIDZ of any redundancy level will approximately behave like a single disk
in regard to IOPS with a lot of bandwidth. How much bandwidth depends on the
size of the RAIDZ vdev and the redundancy level.
A dRAID pool should match the performance of an equivalent RAIDZ pool.
For running VMs, IOPS is the more important metric in most situations.

Size, Space usage and Redundancy

While a pool made of mirror vdevs will have the best performance
characteristics, the usable space will be 50% of the disks available. Less if a
mirror vdev consists of more than 2 disks, for example in a 3-way mirror. At
least one healthy disk per mirror is needed for the pool to stay functional.
The usable space of a RAIDZ type vdev of N disks is roughly N-P, with P being
the RAIDZ-level. The RAIDZ-level indicates how many arbitrary disks can fail
without losing data. A special case is a 4 disk pool with RAIDZ2. In this
situation it is usually better to use 2 mirror vdevs for the better performance
as the usable space will be the same.
Another important factor when using any RAIDZ level is how ZVOL datasets, which
are used for VM disks, behave. For each data block the pool needs parity data
which is at least the size of the minimum block size defined by the ashift
value of the pool. With an ashift of 12 the block size of the pool is 4k. The
default block size for a ZVOL is 8k. Therefore, in a RAIDZ2 each 8k block
written will cause two additional 4k parity blocks to be written,
8k + 4k + 4k = 16k. This is of course a simplified approach and the real
situation will be slightly different with metadata, compression and such not
being accounted for in this example.
This behavior can be observed when checking the following properties of the
ZVOL:
	
volsize

	
refreservation (if the pool is not thin provisioned)

	
used (if the pool is thin provisioned and without snapshots present)

zfs get volsize,refreservation,used <pool>/vm-<vmid>-disk-X
volsize is the size of the disk as it is presented to the VM, while
refreservation shows the reserved space on the pool which includes the
expected space needed for the parity data. If the pool is thin provisioned, the
refreservation will be set to 0. Another way to observe the behavior is to
compare the used disk space within the VM and the used property. Be aware
that snapshots will skew the value.
There are a few options to counter the increased use of space:
	
Increase the volblocksize to improve the data to parity ratio

	
Use mirror vdevs instead of RAIDZ

	
Use ashift=9 (block size of 512 bytes)

The volblocksize property can only be set when creating a ZVOL. The default
value can be changed in the storage configuration. When doing this, the guest
needs to be tuned accordingly and depending on the use case, the problem of
write amplification is just moved from the ZFS layer up to the guest.
Using ashift=9 when creating the pool can lead to bad
performance, depending on the disks underneath, and cannot be changed later on.
Mirror vdevs (RAID1, RAID10) have favorable behavior for VM workloads. Use
them, unless your environment has specific needs and characteristics where
RAIDZ performance characteristics are acceptable.

3.9.4. ZFS dRAID

In a ZFS dRAID (declustered RAID) the hot spare drive(s) participate in the RAID.
Their spare capacity is reserved and used for rebuilding when one drive fails.
This provides, depending on the configuration, faster rebuilding compared to a
RAIDZ in case of drive failure. More information can be found in the official
OpenZFS documentation. [2]
Note
dRAID is intended for more than 10-15 disks in a dRAID. A RAIDZ
setup should be better for a lower amount of disks in most use cases.

Note
The GUI requires one more disk than the minimum (i.e. dRAID1 needs 3). It
expects that a spare disk is added as well.

	
dRAID1 or dRAID: requires at least 2 disks, one can fail before data is
lost

	
dRAID2: requires at least 3 disks, two can fail before data is lost

	
dRAID3: requires at least 4 disks, three can fail before data is lost

Additional information can be found on the manual page:
man zpoolconcepts
Spares and Data

The number of spares tells the system how many disks it should keep ready in
case of a disk failure. The default value is 0 spares. Without spares,
rebuilding won’t get any speed benefits.
data defines the number of devices in a redundancy group. The default value is
8. Except when disks - parity - spares equal something less than 8, the lower
number is used. In general, a smaller number of data devices leads to higher
IOPS, better compression ratios and faster resilvering, but defining fewer data
devices reduces the available storage capacity of the pool.

3.9.5. Bootloader

Proxmox VE uses proxmox-boot-tool to manage the
bootloader configuration.
See the chapter on Proxmox VE host bootloaders for details.

3.9.6. ZFS Administration

This section gives you some usage examples for common tasks. ZFS
itself is really powerful and provides many options. The main commands
to manage ZFS are zfs and zpool. Both commands come with great
manual pages, which can be read with:
man zpool
man zfs
Create a new zpool

To create a new pool, at least one disk is needed. The ashift should have the
same sector-size (2 power of ashift) or larger as the underlying disk.
zpool create -f -o ashift=12 <pool> <device>
Tip
Pool names must adhere to the following rules:
	
begin with a letter (a-z or A-Z)

	
contain only alphanumeric, -, _, ., : or ` ` (space) characters

	
must not begin with one of mirror, raidz, draid or spare

	
must not be log

To activate compression (see section Compression in ZFS):
zfs set compression=lz4 <pool>

Create a new pool with RAID-0

Minimum 1 disk
zpool create -f -o ashift=12 <pool> <device1> <device2>

Create a new pool with RAID-1

Minimum 2 disks
zpool create -f -o ashift=12 <pool> mirror <device1> <device2>

Create a new pool with RAID-10

Minimum 4 disks
zpool create -f -o ashift=12 <pool> mirror <device1> <device2> mirror <device3> <device4>

Create a new pool with RAIDZ-1

Minimum 3 disks
zpool create -f -o ashift=12 <pool> raidz1 <device1> <device2> <device3>

Create a new pool with RAIDZ-2

Minimum 4 disks
zpool create -f -o ashift=12 <pool> raidz2 <device1> <device2> <device3> <device4>
Please read the section for
ZFS RAID Level Considerations
to get a rough estimate on how IOPS and bandwidth expectations before setting up
a pool, especially when wanting to use a RAID-Z mode.

Create a new pool with cache (L2ARC)

It is possible to use a dedicated device, or partition, as second-level cache to
increase the performance. Such a cache device will especially help with
random-read workloads of data that is mostly static. As it acts as additional
caching layer between the actual storage, and the in-memory ARC, it can also
help if the ARC must be reduced due to memory constraints.
Create ZFS pool with a on-disk cache.

zpool create -f -o ashift=12 <pool> <device> cache <cache-device>

Here only a single <device> and a single <cache-device> was used, but it is
possible to use more devices, like it’s shown in
Create a new pool with RAID.
Note that for cache devices no mirror or raid modi exist, they are all simply
accumulated.
If any cache device produces errors on read, ZFS will transparently divert that
request to the underlying storage layer.

Create a new pool with log (ZIL)

It is possible to use a dedicated drive, or partition, for the ZFS Intent Log
(ZIL), it is mainly used to provide safe synchronous transactions, so often in
performance critical paths like databases, or other programs that issue fsync
operations more frequently.
The pool is used as default ZIL location, diverting the ZIL IO load to a
separate device can, help to reduce transaction latencies while relieving the
main pool at the same time, increasing overall performance.
For disks to be used as log devices, directly or through a partition, it’s
recommend to:
	
use fast SSDs with power-loss protection, as those have much smaller commit
 latencies.

	
Use at least a few GB for the partition (or whole device), but using more than
 half of your installed memory won’t provide you with any real advantage.

Create ZFS pool with separate log device.

zpool create -f -o ashift=12 <pool> <device> log <log-device>

In above example a single <device> and a single <log-device> is used, but you
can also combine this with other RAID variants, as described in the
Create a new pool with RAID section.
You can also mirror the log device to multiple devices, this is mainly useful to
ensure that performance doesn’t immediately degrades if a single log device
fails.
If all log devices fail the ZFS main pool itself will be used again, until the
log device(s) get replaced.

Add cache and log to an existing pool

If you have a pool without cache and log you can still add both, or just one of
them, at any time.
For example, let’s assume you got a good enterprise SSD with power-loss
protection that you want to use for improving the overall performance of your
pool.
As the maximum size of a log device should be about half the size of the
installed physical memory, it means that the ZIL will mostly likely only take up
a relatively small part of the SSD, the remaining space can be used as cache.
First you have to create two GPT partitions on the SSD with parted or gdisk.
Then you’re ready to add them to an pool:
Add both, a separate log device and a second-level cache, to an existing pool.

zpool add -f <pool> log <device-part1> cache <device-part2>

Just replay <pool>, <device-part1> and <device-part2> with the pool name
and the two /dev/disk/by-id/ paths to the partitions.
You can also add ZIL and cache separately.
Add a log device to an existing ZFS pool.

zpool add <pool> log <log-device>

Changing a failed device

zpool replace -f <pool> <old-device> <new-device>
Changing a failed bootable device. Depending on how Proxmox VE was installed it is either using systemd-boot or GRUB
through proxmox-boot-tool [3] or plain GRUB as bootloader (see
Host Bootloader). You can check by running:
proxmox-boot-tool status
The first steps of copying the partition table, reissuing GUIDs and replacing
the ZFS partition are the same. To make the system bootable from the new disk,
different steps are needed which depend on the bootloader in use.
sgdisk <healthy bootable device> -R <new device>
sgdisk -G <new device>
zpool replace -f <pool> <old zfs partition> <new zfs partition>
Note
Use the zpool status -v command to monitor how far the resilvering
process of the new disk has progressed.

With proxmox-boot-tool:

proxmox-boot-tool format <new disk's ESP>
proxmox-boot-tool init <new disk's ESP> [grub]

Note
ESP stands for EFI System Partition, which is setup as partition #2 on
bootable disks setup by the Proxmox VE installer since version 5.4. For details, see
Setting up a new partition for use as synced ESP.

Note
Make sure to pass grub as mode to proxmox-boot-tool init if
proxmox-boot-tool status indicates your current disks are using GRUB,
especially if Secure Boot is enabled!

With plain GRUB:

grub-install <new disk>

Note
Plain GRUB is only used on systems installed with Proxmox VE 6.3 or earlier,
which have not been manually migrated to using proxmox-boot-tool yet.

3.9.7. Configure E-Mail Notification

ZFS comes with an event daemon ZED, which monitors events generated by the ZFS
kernel module. The daemon can also send emails on ZFS events like pool errors.
Newer ZFS packages ship the daemon in a separate zfs-zed package, which should
already be installed by default in Proxmox VE.
You can configure the daemon via the file /etc/zfs/zed.d/zed.rc with your
favorite editor. The required setting for email notification is
ZED_EMAIL_ADDR, which is set to root by default.
ZED_EMAIL_ADDR="root"
Please note Proxmox VE forwards mails to root to the email address
configured for the root user.

3.9.8. Limit ZFS Memory Usage

ZFS uses 50 % of the host memory for the Adaptive Replacement
Cache (ARC) by default. For new installations starting with Proxmox VE 8.1, the
ARC usage limit will be set to 10 % of the installed physical memory, clamped
to a maximum of 16 GiB. This value is written to /etc/modprobe.d/zfs.conf.
Allocating enough memory for the ARC is crucial for IO performance, so reduce it
with caution. As a general rule of thumb, allocate at least 2 GiB Base + 1
GiB/TiB-Storage. For example, if you have a pool with 8 TiB of available
storage space then you should use 10 GiB of memory for the ARC.
ZFS also enforces a minimum value of 64 MiB.
You can change the ARC usage limit for the current boot (a reboot resets this
change again) by writing to the zfs_arc_max module parameter directly:
 echo "$[10 * 1024*1024*1024]" >/sys/module/zfs/parameters/zfs_arc_max
To permanently change the ARC limits, add (or change if already present) the
following line to /etc/modprobe.d/zfs.conf:
options zfs zfs_arc_max=8589934592
This example setting limits the usage to 8 GiB (8 * 230).
Important
In case your desired zfs_arc_max value is lower than or equal to
zfs_arc_min (which defaults to 1/32 of the system memory), zfs_arc_max will
be ignored unless you also set zfs_arc_min to at most zfs_arc_max - 1.

echo "$[8 * 1024*1024*1024 - 1]" >/sys/module/zfs/parameters/zfs_arc_min
echo "$[8 * 1024*1024*1024]" >/sys/module/zfs/parameters/zfs_arc_max
This example setting (temporarily) limits the usage to 8 GiB (8 * 230) on
systems with more than 256 GiB of total memory, where simply setting
zfs_arc_max alone would not work.
Important
If your root file system is ZFS, you must update your initramfs every
time this value changes:
update-initramfs -u -k all
You must reboot to activate these changes.

3.9.9. SWAP on ZFS

Swap-space created on a zvol may generate some troubles, like blocking the
server or generating a high IO load, often seen when starting a Backup
to an external Storage.
We strongly recommend to use enough memory, so that you normally do not
run into low memory situations. Should you need or want to add swap, it is
preferred to create a partition on a physical disk and use it as a swap device.
You can leave some space free for this purpose in the advanced options of the
installer. Additionally, you can lower the
“swappiness” value. A good value for servers is 10:
sysctl -w vm.swappiness=10
To make the swappiness persistent, open /etc/sysctl.conf with
an editor of your choice and add the following line:
vm.swappiness = 10
Table 3.1. Linux kernel swappiness parameter values
	 Value 	 Strategy
	vm.swappiness = 0
	The kernel will swap only to avoid
an out of memory condition

	vm.swappiness = 1
	Minimum amount of swapping without
disabling it entirely.

	vm.swappiness = 10
	This value is sometimes recommended to
improve performance when sufficient memory exists in a system.

	vm.swappiness = 60
	The default value.

	vm.swappiness = 100
	The kernel will swap aggressively.

3.9.10. Encrypted ZFS Datasets

Warning
Native ZFS encryption in Proxmox VE is experimental. Known limitations and
issues include Replication with encrypted datasets
[4],
as well as checksum errors when using Snapshots or ZVOLs.
[5]

ZFS on Linux version 0.8.0 introduced support for native encryption of
datasets. After an upgrade from previous ZFS on Linux versions, the encryption
feature can be enabled per pool:
zpool get feature@encryption tank
NAME PROPERTY VALUE SOURCE
tank feature@encryption disabled local

zpool set feature@encryption=enabled

zpool get feature@encryption tank
NAME PROPERTY VALUE SOURCE
tank feature@encryption enabled local
Warning
There is currently no support for booting from pools with encrypted
datasets using GRUB, and only limited support for automatically unlocking
encrypted datasets on boot. Older versions of ZFS without encryption support
will not be able to decrypt stored data.

Note
It is recommended to either unlock storage datasets manually after
booting, or to write a custom unit to pass the key material needed for
unlocking on boot to zfs load-key.

Warning
Establish and test a backup procedure before enabling encryption of
production data. If the associated key material/passphrase/keyfile has been
lost, accessing the encrypted data is no longer possible.

Encryption needs to be setup when creating datasets/zvols, and is inherited by
default to child datasets. For example, to create an encrypted dataset
tank/encrypted_data and configure it as storage in Proxmox VE, run the following
commands:
zfs create -o encryption=on -o keyformat=passphrase tank/encrypted_data
Enter passphrase:
Re-enter passphrase:

pvesm add zfspool encrypted_zfs -pool tank/encrypted_data
All guest volumes/disks create on this storage will be encrypted with the
shared key material of the parent dataset.
To actually use the storage, the associated key material needs to be loaded
and the dataset needs to be mounted. This can be done in one step with:
zfs mount -l tank/encrypted_data
Enter passphrase for 'tank/encrypted_data':
It is also possible to use a (random) keyfile instead of prompting for a
passphrase by setting the keylocation and keyformat properties, either at
creation time or with zfs change-key on existing datasets:
dd if=/dev/urandom of=/path/to/keyfile bs=32 count=1

zfs change-key -o keyformat=raw -o keylocation=file:///path/to/keyfile tank/encrypted_data
Warning
When using a keyfile, special care needs to be taken to secure the
keyfile against unauthorized access or accidental loss. Without the keyfile, it
is not possible to access the plaintext data!

A guest volume created underneath an encrypted dataset will have its
encryptionroot property set accordingly. The key material only needs to be
loaded once per encryptionroot to be available to all encrypted datasets
underneath it.
See the encryptionroot, encryption, keylocation, keyformat and
keystatus properties, the zfs load-key, zfs unload-key and zfs
change-key commands and the Encryption section from man zfs for more
details and advanced usage.

3.9.11. Compression in ZFS

When compression is enabled on a dataset, ZFS tries to compress all new
blocks before writing them and decompresses them on reading. Already
existing data will not be compressed retroactively.
You can enable compression with:
zfs set compression=<algorithm> <dataset>
We recommend using the lz4 algorithm, because it adds very little CPU
overhead. Other algorithms like lzjb and gzip-N, where N is an
integer from 1 (fastest) to 9 (best compression ratio), are also
available. Depending on the algorithm and how compressible the data is,
having compression enabled can even increase I/O performance.
You can disable compression at any time with:
zfs set compression=off <dataset>
Again, only new blocks will be affected by this change.

3.9.12. ZFS Special Device

Since version 0.8.0 ZFS supports special devices. A special device in a
pool is used to store metadata, deduplication tables, and optionally small
file blocks.
A special device can improve the speed of a pool consisting of slow spinning
hard disks with a lot of metadata changes. For example workloads that involve
creating, updating or deleting a large number of files will benefit from the
presence of a special device. ZFS datasets can also be configured to store
whole small files on the special device which can further improve the
performance. Use fast SSDs for the special device.
Important
The redundancy of the special device should match the one of the
pool, since the special device is a point of failure for the whole pool.

Warning
Adding a special device to a pool cannot be undone!

Create a pool with special device and RAID-1:

zpool create -f -o ashift=12 <pool> mirror <device1> <device2> special mirror <device3> <device4>

Add a special device to an existing pool with RAID-1:

zpool add <pool> special mirror <device1> <device2>

ZFS datasets expose the special_small_blocks=<size> property. size can be
0 to disable storing small file blocks on the special device or a power of
two in the range between 512B to 1M. After setting the property new file
blocks smaller than size will be allocated on the special device.
Important
If the value for special_small_blocks is greater than or equal to
the recordsize (default 128K) of the dataset, all data will be written to
the special device, so be careful!

Setting the special_small_blocks property on a pool will change the default
value of that property for all child ZFS datasets (for example all containers
in the pool will opt in for small file blocks).
Opt in for all file smaller than 4K-blocks pool-wide:

zfs set special_small_blocks=4K <pool>

Opt in for small file blocks for a single dataset:

zfs set special_small_blocks=4K <pool>/<filesystem>

Opt out from small file blocks for a single dataset:

zfs set special_small_blocks=0 <pool>/<filesystem>

3.9.13. ZFS Pool Features

Changes to the on-disk format in ZFS are only made between major version changes
and are specified through features. All features, as well as the general
mechanism are well documented in the zpool-features(5) manpage.
Since enabling new features can render a pool not importable by an older version
of ZFS, this needs to be done actively by the administrator, by running
zpool upgrade on the pool (see the zpool-upgrade(8) manpage).
Unless you need to use one of the new features, there is no upside to enabling
them.
In fact, there are some downsides to enabling new features:
	
A system with root on ZFS, that still boots using GRUB will become
 unbootable if a new feature is active on the rpool, due to the incompatible
 implementation of ZFS in GRUB.

	
The system will not be able to import any upgraded pool when booted with an
 older kernel, which still ships with the old ZFS modules.

	
Booting an older Proxmox VE ISO to repair a non-booting system will likewise not
 work.

Important
Do not upgrade your rpool if your system is still booted with
GRUB, as this will render your system unbootable. This includes systems
installed before Proxmox VE 5.4, and systems booting with legacy BIOS boot (see
how to determine the bootloader).

Enable new features for a ZFS pool:

zpool upgrade <pool>

[2] OpenZFS dRAID
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/dRAID%20Howto.html

[3] Systems installed with Proxmox VE 6.4 or later,
EFI systems installed with Proxmox VE 5.4 or later

[4] https://bugzilla.proxmox.com/show_bug.cgi?id=2350

[5] https://github.com/openzfs/zfs/issues/11688

3.10. BTRFS

Warning
BTRFS integration is currently a technology preview in Proxmox VE.

BTRFS is a modern copy on write file system natively supported by the Linux
kernel, implementing features such as snapshots, built-in RAID and self healing
via checksums for data and metadata. Starting with Proxmox VE 7.0, BTRFS is
introduced as optional selection for the root file system.
General BTRFS advantages
	
Main system setup almost identical to the traditional ext4 based setup

	
Snapshots

	
Data compression on file system level

	
Copy-on-write clone

	
RAID0, RAID1 and RAID10

	
Protection against data corruption

	
Self healing

	
natively supported by the Linux kernel

	
…

Caveats
	
RAID levels 5/6 are experimental and dangerous

3.10.1. Installation as Root File System

When you install using the Proxmox VE installer, you can choose BTRFS for the root
file system. You need to select the RAID type at installation time:
	

RAID0

	

Also called “striping”. The capacity of such volume is the sum
of the capacities of all disks. But RAID0 does not add any redundancy,
so the failure of a single drive makes the volume unusable.

	

RAID1

	

Also called “mirroring”. Data is written identically to all
disks. This mode requires at least 2 disks with the same size. The
resulting capacity is that of a single disk.

	

RAID10

	

A combination of RAID0 and RAID1. Requires at least 4 disks.

The installer automatically partitions the disks and creates an additional
subvolume at /var/lib/pve/local-btrfs. In order to use that with the Proxmox VE
tools, the installer creates the following configuration entry in
/etc/pve/storage.cfg:
dir: local
 path /var/lib/vz
 content iso,vztmpl,backup
 disable

btrfs: local-btrfs
 path /var/lib/pve/local-btrfs
 content iso,vztmpl,backup,images,rootdir
This explicitly disables the default local storage in favor of a BTRFS
specific storage entry on the additional subvolume.
The btrfs command is used to configure and manage the BTRFS file system,
After the installation, the following command lists all additional subvolumes:
btrfs subvolume list /
ID 256 gen 6 top level 5 path var/lib/pve/local-btrfs

3.10.2. BTRFS Administration

This section gives you some usage examples for common tasks.
Creating a BTRFS file system

To create BTRFS file systems, mkfs.btrfs is used. The -d and -m parameters
are used to set the profile for metadata and data respectively. With the
optional -L parameter, a label can be set.
Generally, the following modes are supported: single, raid0, raid1,
raid10.
Create a BTRFS file system on a single disk /dev/sdb with the label
My-Storage:
 # mkfs.btrfs -m single -d single -L My-Storage /dev/sdb
Or create a RAID1 on the two partitions /dev/sdb1 and /dev/sdc1:
 # mkfs.btrfs -m raid1 -d raid1 -L My-Storage /dev/sdb1 /dev/sdc1

Mounting a BTRFS file system

The new file-system can then be mounted either manually, for example:
 # mkdir /my-storage
 # mount /dev/sdb /my-storage
A BTRFS can also be added to /etc/fstab like any other mount point,
automatically mounting it on boot. It’s recommended to avoid using
block-device paths but use the UUID value the mkfs.btrfs command printed,
especially there is more than one disk in a BTRFS setup.
For example:
File /etc/fstab.

... other mount points left out for brevity

using the UUID from the mkfs.btrfs output is highly recommended
UUID=e2c0c3ff-2114-4f54-b767-3a203e49f6f3 /my-storage btrfs defaults 0 0

Tip
If you do not have the UUID available anymore you can use the blkid tool
 to list all properties of block-devices.

Afterwards you can trigger the first mount by executing:
mount /my-storage
After the next reboot this will be automatically done by the system at boot.

Adding a BTRFS file system to Proxmox VE

You can add an existing BTRFS file system to Proxmox VE via the web interface, or
using the CLI, for example:
pvesm add btrfs my-storage --path /my-storage

Creating a subvolume

Creating a subvolume links it to a path in the BTRFS file system, where it will
appear as a regular directory.
btrfs subvolume create /some/path
Afterwards /some/path will act like a regular directory.

Deleting a subvolume

Contrary to directories removed via rmdir, subvolumes do not need to be empty
in order to be deleted via the btrfs command.
btrfs subvolume delete /some/path

Creating a snapshot of a subvolume

BTRFS does not actually distinguish between snapshots and normal subvolumes, so
taking a snapshot can also be seen as creating an arbitrary copy of a subvolume.
By convention, Proxmox VE will use the read-only flag when creating snapshots of
guest disks or subvolumes, but this flag can also be changed later on.
btrfs subvolume snapshot -r /some/path /a/new/path
This will create a read-only "clone" of the subvolume on /some/path at
/a/new/path. Any future modifications to /some/path cause the modified data
to be copied before modification.
If the read-only (-r) option is left out, both subvolumes will be writable.

Enabling compression

By default, BTRFS does not compress data. To enable compression, the compress
mount option can be added. Note that data already written will not be compressed
after the fact.
By default, the rootfs will be listed in /etc/fstab as follows:
UUID=<uuid of your root file system> / btrfs defaults 0 1
You can simply append compress=zstd, compress=lzo, or compress=zlib to the
defaults above like so:
UUID=<uuid of your root file system> / btrfs defaults,compress=zstd 0 1
This change will take effect after rebooting.

Checking Space Usage

The classic df tool may output confusing values for some BTRFS setups.
For a better estimate use the btrfs filesystem usage /PATH command, for example:
btrfs fi usage /my-storage

3.11. Proxmox Node Management

The Proxmox VE node management tool (pvenode) allows you to control node specific
settings and resources.
Currently pvenode allows you to set a node’s description, run various
bulk operations on the node’s guests, view the node’s task history, and
manage the node’s SSL certificates, which are used for the API and the web GUI
through pveproxy.
3.11.1. Wake-on-LAN

Wake-on-LAN (WoL) allows you to switch on a sleeping computer in the network, by
sending a magic packet. At least one NIC must support this feature, and the
respective option needs to be enabled in the computer’s firmware (BIOS/UEFI)
configuration. The option name can vary from Enable Wake-on-Lan to
Power On By PCIE Device; check your motherboard’s vendor manual, if you’re
unsure. ethtool can be used to check the WoL configuration of <interface>
by running:
ethtool <interface> | grep Wake-on
pvenode allows you to wake sleeping members of a cluster via WoL, using the
command:
pvenode wakeonlan <node>
This broadcasts the WoL magic packet on UDP port 9, containing the MAC address
of <node> obtained from the wakeonlan property. The node-specific
wakeonlan property can be set using the following command:
pvenode config set -wakeonlan XX:XX:XX:XX:XX:XX

3.11.2. Task History

When troubleshooting server issues, for example, failed backup jobs, it can
often be helpful to have a log of the previously run tasks. With Proxmox VE, you can
access the nodes’s task history through the pvenode task command.
You can get a filtered list of a node’s finished tasks with the list
subcommand. For example, to get a list of tasks related to VM 100
that ended with an error, the command would be:
pvenode task list --errors --vmid 100
The log of a task can then be printed using its UPID:
pvenode task log UPID:pve1:00010D94:001CA6EA:6124E1B9:vzdump:100:root@pam:

3.11.3. Bulk Guest Power Management

In case you have many VMs/containers, starting and stopping guests can be
carried out in bulk operations with the startall and stopall subcommands of
pvenode. By default, pvenode startall will only start VMs/containers which
have been set to automatically start on boot (see
Automatic Start and Shutdown of Virtual Machines),
however, you can override this behavior with the --force flag. Both commands
also have a --vms option, which limits the stopped/started guests to the
specified VMIDs.
For example, to start VMs 100, 101, and 102, regardless of whether they
have onboot set, you can use:
pvenode startall --vms 100,101,102 --force
To stop these guests (and any other guests that may be running), use the
command:
pvenode stopall
Note
The stopall command first attempts to perform a clean shutdown and then
waits until either all guests have successfully shut down or an overridable
timeout (3 minutes by default) has expired. Once that happens and the
force-stop parameter is not explicitly set to 0 (false), all virtual guests
that are still running are hard stopped.

3.11.4. First Guest Boot Delay

In case your VMs/containers rely on slow-to-start external resources, for
example an NFS server, you can also set a per-node delay between the time Proxmox VE
boots and the time the first VM/container that is configured to autostart boots
(see Automatic Start and Shutdown of Virtual Machines).
You can achieve this by setting the following (where 10 represents the delay
in seconds):
pvenode config set --startall-onboot-delay 10

3.11.5. Bulk Guest Migration

In case an upgrade situation requires you to migrate all of your guests from one
node to another, pvenode also offers the migrateall subcommand for bulk
migration. By default, this command will migrate every guest on the system to
the target node. It can however be set to only migrate a set of guests.
For example, to migrate VMs 100, 101, and 102, to the node pve2, with
live-migration for local disks enabled, you can run:
pvenode migrateall pve2 --vms 100,101,102 --with-local-disks

3.12. Certificate Management

3.12.1. Certificates for Intra-Cluster Communication

Each Proxmox VE cluster creates by default its own (self-signed) Certificate
Authority (CA) and generates a certificate for each node which gets signed by
the aforementioned CA. These certificates are used for encrypted communication
with the cluster’s pveproxy service and the Shell/Console feature if SPICE is
used.
The CA certificate and key are stored in the Proxmox Cluster File System (pmxcfs).

3.12.2. Certificates for API and Web GUI

The REST API and web GUI are provided by the pveproxy service, which runs on
each node.
You have the following options for the certificate used by pveproxy:
	
By default the node-specific certificate in
/etc/pve/nodes/NODENAME/pve-ssl.pem is used. This certificate is signed by
the cluster CA and therefore not automatically trusted by browsers and
operating systems.

	
use an externally provided certificate (e.g. signed by a commercial CA).

	
use ACME (Let’s Encrypt) to get a trusted certificate with automatic
renewal, this is also integrated in the Proxmox VE API and web interface.

For options 2 and 3 the file /etc/pve/local/pveproxy-ssl.pem (and
/etc/pve/local/pveproxy-ssl.key, which needs to be without password) is used.
Note
Keep in mind that /etc/pve/local is a node specific symlink to
/etc/pve/nodes/NODENAME.

Certificates are managed with the Proxmox VE Node management command
(see the pvenode(1) manpage).
Warning
Do not replace or manually modify the automatically generated node
certificate files in /etc/pve/local/pve-ssl.pem and
/etc/pve/local/pve-ssl.key or the cluster CA files in
/etc/pve/pve-root-ca.pem and /etc/pve/priv/pve-root-ca.key.

3.12.3. Upload Custom Certificate

If you already have a certificate which you want to use for a Proxmox VE node you
can upload that certificate simply over the web interface.
[image: screenshot/gui-node-certs-upload-custom.png]
Note that the certificates key file, if provided, mustn’t be password
protected.

3.12.4. Trusted certificates via Let’s Encrypt (ACME)

Proxmox VE includes an implementation of the Automatic Certificate
Management Environment ACME protocol, allowing Proxmox VE admins to
use an ACME provider like Let’s Encrypt for easy setup of TLS certificates
which are accepted and trusted on modern operating systems and web browsers
out of the box.
Currently, the two ACME endpoints implemented are the
Let’s Encrypt (LE) production and its staging
environment. Our ACME client supports validation of http-01 challenges using
a built-in web server and validation of dns-01 challenges using a DNS plugin
supporting all the DNS API endpoints acme.sh does.
ACME Account

[image: screenshot/gui-datacenter-acme-register-account.png]
You need to register an ACME account per cluster with the endpoint you want to
use. The email address used for that account will serve as contact point for
renewal-due or similar notifications from the ACME endpoint.
You can register and deactivate ACME accounts over the web interface
Datacenter -> ACME or using the pvenode command-line tool.
 pvenode acme account register account-name mail@example.com
Tip
Because of rate-limits you
should use LE staging for experiments or if you use ACME for the first time.

ACME Plugins

The ACME plugins task is to provide automatic verification that you, and thus
the Proxmox VE cluster under your operation, are the real owner of a domain. This is
the basis building block for automatic certificate management.
The ACME protocol specifies different types of challenges, for example the
http-01 where a web server provides a file with a certain content to prove
that it controls a domain. Sometimes this isn’t possible, either because of
technical limitations or if the address of a record to is not reachable from
the public internet. The dns-01 challenge can be used in these cases. This
challenge is fulfilled by creating a certain DNS record in the domain’s zone.
[image: screenshot/gui-datacenter-acme-overview.png]
Proxmox VE supports both of those challenge types out of the box, you can configure
plugins either over the web interface under Datacenter -> ACME, or using the
pvenode acme plugin add command.
ACME Plugin configurations are stored in /etc/pve/priv/acme/plugins.cfg.
A plugin is available for all nodes in the cluster.

Node Domains

Each domain is node specific. You can add new or manage existing domain entries
under Node -> Certificates, or using the pvenode config command.
[image: screenshot/gui-node-certs-add-domain.png]
After configuring the desired domain(s) for a node and ensuring that the
desired ACME account is selected, you can order your new certificate over the
web interface. On success the interface will reload after 10 seconds.
Renewal will happen automatically.

3.12.5. ACME HTTP Challenge Plugin

There is always an implicitly configured standalone plugin for validating
http-01 challenges via the built-in webserver spawned on port 80.
Note
The name standalone means that it can provide the validation on it’s
own, without any third party service. So, this plugin works also for cluster
nodes.

There are a few prerequisites to use it for certificate management with Let’s
Encrypts ACME.
	
You have to accept the ToS of Let’s Encrypt to register an account.

	
Port 80 of the node needs to be reachable from the internet.

	
There must be no other listener on port 80.

	
The requested (sub)domain needs to resolve to a public IP of the Node.

3.12.6. ACME DNS API Challenge Plugin

On systems where external access for validation via the http-01 method is
not possible or desired, it is possible to use the dns-01 validation method.
This validation method requires a DNS server that allows provisioning of TXT
records via an API.
Configuring ACME DNS APIs for validation

Proxmox VE re-uses the DNS plugins developed for the acme.sh
[6] project, please
refer to its documentation for details on configuration of specific APIs.
The easiest way to configure a new plugin with the DNS API is using the web
interface (Datacenter -> ACME).
[image: screenshot/gui-datacenter-acme-add-dns-plugin.png]
Choose DNS as challenge type. Then you can select your API provider, enter
the credential data to access your account over their API.
Tip
See the acme.sh
How to use DNS API
wiki for more detailed information about getting API credentials for your
provider.

As there are many DNS providers and API endpoints Proxmox VE automatically generates
the form for the credentials for some providers. For the others you will see a
bigger text area, simply copy all the credentials KEY=VALUE pairs in there.

DNS Validation through CNAME Alias

A special alias mode can be used to handle the validation on a different
domain/DNS server, in case your primary/real DNS does not support provisioning
via an API. Manually set up a permanent CNAME record for
_acme-challenge.domain1.example pointing to _acme-challenge.domain2.example
and set the alias property in the Proxmox VE node configuration file to
domain2.example to allow the DNS server of domain2.example to validate all
challenges for domain1.example.

Combination of Plugins

Combining http-01 and dns-01 validation is possible in case your node is
reachable via multiple domains with different requirements / DNS provisioning
capabilities. Mixing DNS APIs from multiple providers or instances is also
possible by specifying different plugin instances per domain.
Tip
Accessing the same service over multiple domains increases complexity and
should be avoided if possible.

3.12.7. Automatic renewal of ACME certificates

If a node has been successfully configured with an ACME-provided certificate
(either via pvenode or via the GUI), the certificate will be automatically
renewed by the pve-daily-update.service. Currently, renewal will be attempted
if the certificate has expired already, or will expire in the next 30 days.

3.12.8. ACME Examples with pvenode

Example: Sample pvenode invocation for using Let’s Encrypt certificates

root@proxmox:~# pvenode acme account register default mail@example.invalid
Directory endpoints:
0) Let's Encrypt V2 (https://acme-v02.api.letsencrypt.org/directory)
1) Let's Encrypt V2 Staging (https://acme-staging-v02.api.letsencrypt.org/directory)
2) Custom
Enter selection: 1

Terms of Service: https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Do you agree to the above terms? [y|N]y
...
Task OK
root@proxmox:~# pvenode config set --acme domains=example.invalid
root@proxmox:~# pvenode acme cert order
Loading ACME account details
Placing ACME order
...
Status is 'valid'!

All domains validated!
...
Downloading certificate
Setting pveproxy certificate and key
Restarting pveproxy
Task OK

Example: Setting up the OVH API for validating a domain

Note
the account registration steps are the same no matter which plugins are
used, and are not repeated here.

Note
OVH_AK and OVH_AS need to be obtained from OVH according to the OVH
API documentation

First you need to get all information so you and Proxmox VE can access the API.
root@proxmox:~# cat /path/to/api-token
OVH_AK=XXXXXXXXXXXXXXXX
OVH_AS=YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
root@proxmox:~# source /path/to/api-token
root@proxmox:~# curl -XPOST -H"X-Ovh-Application: $OVH_AK" -H "Content-type: application/json" \
https://eu.api.ovh.com/1.0/auth/credential -d '{
 "accessRules": [
 {"method": "GET","path": "/auth/time"},
 {"method": "GET","path": "/domain"},
 {"method": "GET","path": "/domain/zone/*"},
 {"method": "GET","path": "/domain/zone/*/record"},
 {"method": "POST","path": "/domain/zone/*/record"},
 {"method": "POST","path": "/domain/zone/*/refresh"},
 {"method": "PUT","path": "/domain/zone/*/record/"},
 {"method": "DELETE","path": "/domain/zone/*/record/*"}
]
}'
{"consumerKey":"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ","state":"pendingValidation","validationUrl":"https://eu.api.ovh.com/auth/?credentialToken=AA"}

(open validation URL and follow instructions to link Application Key with account/Consumer Key)

root@proxmox:~# echo "OVH_CK=ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" >> /path/to/api-token
Now you can setup the the ACME plugin:
root@proxmox:~# pvenode acme plugin add dns example_plugin --api ovh --data /path/to/api_token
root@proxmox:~# pvenode acme plugin config example_plugin
┌────────┬──┐
│ key │ value │
╞════════╪══╡
│ api │ ovh │
├────────┼──┤
│ data │ OVH_AK=XXXXXXXXXXXXXXXX │
│ │ OVH_AS=YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY │
│ │ OVH_CK=ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ │
├────────┼──┤
│ digest │ 867fcf556363ca1bea866863093fcab83edf47a1 │
├────────┼──┤
│ plugin │ example_plugin │
├────────┼──┤
│ type │ dns │
└────────┴──┘
At last you can configure the domain you want to get certificates for and
place the certificate order for it:
root@proxmox:~# pvenode config set -acmedomain0 example.proxmox.com,plugin=example_plugin
root@proxmox:~# pvenode acme cert order
Loading ACME account details
Placing ACME order
Order URL: https://acme-staging-v02.api.letsencrypt.org/acme/order/11111111/22222222

Getting authorization details from 'https://acme-staging-v02.api.letsencrypt.org/acme/authz-v3/33333333'
The validation for example.proxmox.com is pending!
[Wed Apr 22 09:25:30 CEST 2020] Using OVH endpoint: ovh-eu
[Wed Apr 22 09:25:30 CEST 2020] Checking authentication
[Wed Apr 22 09:25:30 CEST 2020] Consumer key is ok.
[Wed Apr 22 09:25:31 CEST 2020] Adding record
[Wed Apr 22 09:25:32 CEST 2020] Added, sleep 10 seconds.
Add TXT record: _acme-challenge.example.proxmox.com
Triggering validation
Sleeping for 5 seconds
Status is 'valid'!
[Wed Apr 22 09:25:48 CEST 2020] Using OVH endpoint: ovh-eu
[Wed Apr 22 09:25:48 CEST 2020] Checking authentication
[Wed Apr 22 09:25:48 CEST 2020] Consumer key is ok.
Remove TXT record: _acme-challenge.example.proxmox.com

All domains validated!

Creating CSR
Checking order status
Order is ready, finalizing order
valid!

Downloading certificate
Setting pveproxy certificate and key
Restarting pveproxy
Task OK

Example: Switching from the staging to the regular ACME directory

Changing the ACME directory for an account is unsupported, but as Proxmox VE
supports more than one account you can just create a new one with the
production (trusted) ACME directory as endpoint. You can also deactivate the
staging account and recreate it.
Example: Changing the default ACME account from staging to directory using pvenode.

root@proxmox:~# pvenode acme account deactivate default
Renaming account file from '/etc/pve/priv/acme/default' to '/etc/pve/priv/acme/_deactivated_default_4'
Task OK

root@proxmox:~# pvenode acme account register default example@proxmox.com
Directory endpoints:
0) Let's Encrypt V2 (https://acme-v02.api.letsencrypt.org/directory)
1) Let's Encrypt V2 Staging (https://acme-staging-v02.api.letsencrypt.org/directory)
2) Custom
Enter selection: 0

Terms of Service: https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Do you agree to the above terms? [y|N]y
...
Task OK

[6] acme.sh https://github.com/acmesh-official/acme.sh

3.13. Host Bootloader

Proxmox VE currently uses one of two bootloaders depending on the disk setup
selected in the installer.
For EFI Systems installed with ZFS as the root filesystem systemd-boot is
used, unless Secure Boot is enabled. All other deployments use the standard
GRUB bootloader (this usually also applies to systems which are installed on
top of Debian).
3.13.1. Partitioning Scheme Used by the Installer

The Proxmox VE installer creates 3 partitions on all disks selected for
installation.
The created partitions are:
	
a 1 MB BIOS Boot Partition (gdisk type EF02)

	
a 512 MB EFI System Partition (ESP, gdisk type EF00)

	
a third partition spanning the set hdsize parameter or the remaining space
 used for the chosen storage type

Systems using ZFS as root filesystem are booted with a kernel and initrd image
stored on the 512 MB EFI System Partition. For legacy BIOS systems, and EFI
systems with Secure Boot enabled, GRUB is used, for EFI systems without
Secure Boot, systemd-boot is used. Both are installed and configured to point
to the ESPs.
GRUB in BIOS mode (--target i386-pc) is installed onto the BIOS Boot
Partition of all selected disks on all systems booted with GRUB
[7].

3.13.2. Synchronizing the content of the ESP with proxmox-boot-tool

proxmox-boot-tool is a utility used to keep the contents of the EFI System
Partitions properly configured and synchronized. It copies certain kernel
versions to all ESPs and configures the respective bootloader to boot from
the vfat formatted ESPs. In the context of ZFS as root filesystem this means
that you can use all optional features on your root pool instead of the subset
which is also present in the ZFS implementation in GRUB or having to create a
separate small boot-pool [8].
In setups with redundancy all disks are partitioned with an ESP, by the
installer. This ensures the system boots even if the first boot device fails
or if the BIOS can only boot from a particular disk.
The ESPs are not kept mounted during regular operation. This helps to prevent
filesystem corruption to the vfat formatted ESPs in case of a system crash,
and removes the need to manually adapt /etc/fstab in case the primary boot
device fails.
proxmox-boot-tool handles the following tasks:
	
formatting and setting up a new partition

	
copying and configuring new kernel images and initrd images to all listed ESPs

	
synchronizing the configuration on kernel upgrades and other maintenance tasks

	
managing the list of kernel versions which are synchronized

	
configuring the boot-loader to boot a particular kernel version (pinning)

You can view the currently configured ESPs and their state by running:
proxmox-boot-tool status
Setting up a new partition for use as synced ESP. To format and initialize a partition as synced ESP, e.g., after replacing a
failed vdev in an rpool, or when converting an existing system that pre-dates
the sync mechanism, proxmox-boot-tool from proxmox-kernel-helper can be used.
Warning
the format command will format the <partition>, make sure to pass
in the right device/partition!

For example, to format an empty partition /dev/sda2 as ESP, run the following:
proxmox-boot-tool format /dev/sda2
To setup an existing, unmounted ESP located on /dev/sda2 for inclusion in
Proxmox VE’s kernel update synchronization mechanism, use the following:
proxmox-boot-tool init /dev/sda2
or
proxmox-boot-tool init /dev/sda2 grub
to force initialization with GRUB instead of systemd-boot, for example for
Secure Boot support.
Afterwards /etc/kernel/proxmox-boot-uuids should contain a new line with the
UUID of the newly added partition. The init command will also automatically
trigger a refresh of all configured ESPs.
Updating the configuration on all ESPs. To copy and configure all bootable kernels and keep all ESPs listed in
/etc/kernel/proxmox-boot-uuids in sync you just need to run:
proxmox-boot-tool refresh
(The equivalent to running update-grub systems with ext4 or xfs on root).
This is necessary should you make changes to the kernel commandline, or want to
sync all kernels and initrds.
Note
Both update-initramfs and apt (when necessary) will automatically
trigger a refresh.

Kernel Versions considered by proxmox-boot-tool. The following kernel versions are configured by default:
	
the currently running kernel

	
the version being newly installed on package updates

	
the two latest already installed kernels

	
the latest version of the second-to-last kernel series (e.g. 5.0, 5.3), if applicable

	
any manually selected kernels

Manually keeping a kernel bootable. Should you wish to add a certain kernel and initrd image to the list of
bootable kernels use proxmox-boot-tool kernel add.
For example run the following to add the kernel with ABI version 5.0.15-1-pve
to the list of kernels to keep installed and synced to all ESPs:
proxmox-boot-tool kernel add 5.0.15-1-pve
proxmox-boot-tool kernel list will list all kernel versions currently selected
for booting:
proxmox-boot-tool kernel list
Manually selected kernels:
5.0.15-1-pve

Automatically selected kernels:
5.0.12-1-pve
4.15.18-18-pve
Run proxmox-boot-tool kernel remove to remove a kernel from the list of
manually selected kernels, for example:
proxmox-boot-tool kernel remove 5.0.15-1-pve
Note
It’s required to run proxmox-boot-tool refresh to update all EFI System
Partitions (ESPs) after a manual kernel addition or removal from above.

3.13.3. Determine which Bootloader is Used

[image: screenshot/boot-grub.png]
The simplest and most reliable way to determine which bootloader is used, is to
watch the boot process of the Proxmox VE node.
You will either see the blue box of GRUB or the simple black on white
systemd-boot.
[image: screenshot/boot-systemdboot.png]
Determining the bootloader from a running system might not be 100% accurate. The
safest way is to run the following command:
efibootmgr -v
If it returns a message that EFI variables are not supported, GRUB is used in
BIOS/Legacy mode.
If the output contains a line that looks similar to the following, GRUB is
used in UEFI mode.
Boot0005* proxmox [...] File(\EFI\proxmox\grubx64.efi)
If the output contains a line similar to the following, systemd-boot is used.
Boot0006* Linux Boot Manager [...] File(\EFI\systemd\systemd-bootx64.efi)
By running:
proxmox-boot-tool status
you can find out if proxmox-boot-tool is configured, which is a good
indication of how the system is booted.

3.13.4. GRUB

GRUB has been the de-facto standard for booting Linux systems for many years
and is quite well documented
[9].
Configuration

Changes to the GRUB configuration are done via the defaults file
/etc/default/grub or config snippets in /etc/default/grub.d. To regenerate
the configuration file after a change to the configuration run:
[10]
update-grub

3.13.5. Systemd-boot

systemd-boot is a lightweight EFI bootloader. It reads the kernel and initrd
images directly from the EFI Service Partition (ESP) where it is installed.
The main advantage of directly loading the kernel from the ESP is that it does
not need to reimplement the drivers for accessing the storage. In Proxmox VE
proxmox-boot-tool is used to keep the
configuration on the ESPs synchronized.
Configuration

systemd-boot is configured via the file loader/loader.conf in the root
directory of an EFI System Partition (ESP). See the loader.conf(5) manpage
for details.
Each bootloader entry is placed in a file of its own in the directory
loader/entries/
An example entry.conf looks like this (/ refers to the root of the ESP):
title Proxmox
version 5.0.15-1-pve
options root=ZFS=rpool/ROOT/pve-1 boot=zfs
linux /EFI/proxmox/5.0.15-1-pve/vmlinuz-5.0.15-1-pve
initrd /EFI/proxmox/5.0.15-1-pve/initrd.img-5.0.15-1-pve

3.13.6. Editing the Kernel Commandline

You can modify the kernel commandline in the following places, depending on the
bootloader used:
GRUB. The kernel commandline needs to be placed in the variable
GRUB_CMDLINE_LINUX_DEFAULT in the file /etc/default/grub. Running
update-grub appends its content to all linux entries in
/boot/grub/grub.cfg.
Systemd-boot. The kernel commandline needs to be placed as one line in /etc/kernel/cmdline.
To apply your changes, run proxmox-boot-tool refresh, which sets it as the
option line for all config files in loader/entries/proxmox-*.conf.
A complete list of kernel parameters can be found at
https://www.kernel.org/doc/html/v<YOUR-KERNEL-VERSION>/admin-guide/kernel-parameters.html.
replace <YOUR-KERNEL-VERSION> with the major.minor version, for example, for
kernels based on version 6.5 the URL would be:
https://www.kernel.org/doc/html/v6.5/admin-guide/kernel-parameters.html
You can find your kernel version by checking the web interface (Node →
Summary), or by running
uname -r
Use the first two numbers at the front of the output.

3.13.7. Override the Kernel-Version for next Boot

To select a kernel that is not currently the default kernel, you can either:
	
use the boot loader menu that is displayed at the beginning of the boot
 process

	
use the proxmox-boot-tool to pin the system to a kernel version either
 once or permanently (until pin is reset).

This should help you work around incompatibilities between a newer kernel
version and the hardware.
Note
Such a pin should be removed as soon as possible so that all current
security patches of the latest kernel are also applied to the system.

For example: To permanently select the version 5.15.30-1-pve for booting you
would run:
proxmox-boot-tool kernel pin 5.15.30-1-pve
Tip
The pinning functionality works for all Proxmox VE systems, not only those using
proxmox-boot-tool to synchronize the contents of the ESPs, if your system
does not use proxmox-boot-tool for synchronizing you can also skip the
proxmox-boot-tool refresh call in the end.

You can also set a kernel version to be booted on the next system boot only.
This is for example useful to test if an updated kernel has resolved an issue,
which caused you to pin a version in the first place:
proxmox-boot-tool kernel pin 5.15.30-1-pve --next-boot
To remove any pinned version configuration use the unpin subcommand:
proxmox-boot-tool kernel unpin
While unpin has a --next-boot option as well, it is used to clear a pinned
version set with --next-boot. As that happens already automatically on boot,
invonking it manually is of little use.
After setting, or clearing pinned versions you also need to synchronize the
content and configuration on the ESPs by running the refresh subcommand.
Tip
You will be prompted to automatically do for proxmox-boot-tool managed
systems if you call the tool interactively.

proxmox-boot-tool refresh

3.13.8. Secure Boot

Since Proxmox VE 8.1, Secure Boot is supported out of the box via signed packages
and integration in proxmox-boot-tool.
The following packages need to be installed for Secure Boot to be enabled:
	
shim-signed (shim bootloader signed by Microsoft)

	
shim-helpers-amd64-signed (fallback bootloader and MOKManager, signed by
 Proxmox)

	
grub-efi-amd64-signed (GRUB EFI bootloader, signed by Proxmox)

	
proxmox-kernel-6.X.Y-Z-pve-signed (Kernel image, signed by Proxmox)

Only GRUB as bootloader is supported out of the box, since there are no other
pre-signed bootloader packages available. Any new installation of Proxmox VE will
automatically have all of the above packages included.
More details about how Secure Boot works, and how to customize the setup, are
available in our wiki.
Switching an Existing Installation to Secure Boot

Warning
This can lead to an unbootable installation in some cases if not done
correctly. Reinstalling the host will setup Secure Boot automatically if
available, without any extra interactions. Make sure you have a working and
well-tested backup of your Proxmox VE host!

An existing UEFI installation can be switched over to Secure Boot if desired,
without having to reinstall Proxmox VE from scratch.
First, ensure all your system is up-to-date. Next, install all the required
pre-signed packages as listed above. GRUB automatically creates the needed EFI
boot entry for booting via the default shim.
systemd-boot. If systemd-boot is used as a bootloader (see
Determine which Bootloader is used),
some additional setup is needed. This is only the case if Proxmox VE was installed
with ZFS-on-root.
To check the latter, run:
findmnt /
If the host is indeed using ZFS as root filesystem, the FSTYPE column
should contain zfs:
TARGET SOURCE FSTYPE OPTIONS
/ rpool/ROOT/pve-1 zfs rw,relatime,xattr,noacl,casesensitive
Next, a suitable potential ESP (EFI system partition) must be found. This can be
done using the lsblk command as following:
lsblk -o +FSTYPE
The output should look something like this:
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS FSTYPE
sda 8:0 0 32G 0 disk
├─sda1 8:1 0 1007K 0 part
├─sda2 8:2 0 512M 0 part vfat
└─sda3 8:3 0 31.5G 0 part zfs_member
sdb 8:16 0 32G 0 disk
├─sdb1 8:17 0 1007K 0 part
├─sdb2 8:18 0 512M 0 part vfat
└─sdb3 8:19 0 31.5G 0 part zfs_member
In this case, the partitions sda2 and sdb2 are the targets. They can be
identified by the their size of 512M and their FSTYPE being vfat, in this
case on a ZFS RAID-1 installation.
These partitions must be properly set up for booting through GRUB using
proxmox-boot-tool. This command (using sda2 as an example) must be run
separately for each individual ESP:
proxmox-boot-tool init /dev/sda2 grub
Afterwards, you can sanity-check the setup by running the following command:
efibootmgr -v
This list should contain an entry looking similar to this:
[..]
Boot0009* proxmox HD(2,GPT,..,0x800,0x100000)/File(\EFI\proxmox\shimx64.efi)
[..]
Note
The old systemd-boot bootloader will be kept, but GRUB will be
preferred. This way, if booting using GRUB in Secure Boot mode does not work for
any reason, the system can still be booted using systemd-boot with Secure Boot
turned off.

Now the host can be rebooted and Secure Boot enabled in the UEFI firmware setup
utility.
On reboot, a new entry named proxmox should be selectable in the UEFI firmware
boot menu, which boots using the pre-signed EFI shim.
If, for any reason, no proxmox entry can be found in the UEFI boot menu, you
can try adding it manually (if supported by the firmware), by adding the file
\EFI\proxmox\shimx64.efi as a custom boot entry.
Note
Some UEFI firmwares are known to drop the proxmox boot option on reboot.
This can happen if the proxmox boot entry is pointing to a GRUB installation
on a disk, where the disk itself is not a boot option. If possible, try adding
the disk as a boot option in the UEFI firmware setup utility and run
proxmox-boot-tool again.

Tip
To enroll custom keys, see the accompanying
Secure
Boot wiki page.

Using DKMS/Third Party Modules With Secure Boot

On systems with Secure Boot enabled, the kernel will refuse to load modules
which are not signed by a trusted key. The default set of modules shipped with
the kernel packages is signed with an ephemeral key embedded in the kernel
image which is trusted by that specific version of the kernel image.
In order to load other modules, such as those built with DKMS or manually, they
need to be signed with a key trusted by the Secure Boot stack. The easiest way
to achieve this is to enroll them as Machine Owner Key (MOK) with mokutil.
The dkms tool will automatically generate a keypair and certificate in
/var/lib/dkms/mok.key and /var/lib/dkms/mok.pub and use it for signing
the kernel modules it builds and installs.
You can view the certificate contents with
openssl x509 -in /var/lib/dkms/mok.pub -noout -text
and enroll it on your system using the following command:
mokutil --import /var/lib/dkms/mok.pub
input password:
input password again:
The mokutil command will ask for a (temporary) password twice, this password
needs to be entered one more time in the next step of the process! Rebooting
the system should automatically boot into the MOKManager EFI binary, which
allows you to verify the key/certificate and confirm the enrollment using the
password selected when starting the enrollment using mokutil. Afterwards, the
kernel should allow loading modules built with DKMS (which are signed with the
enrolled MOK). The MOK can also be used to sign custom EFI binaries and
kernel images if desired.
The same procedure can also be used for custom/third-party modules not managed
with DKMS, but the key/certificate generation and signing steps need to be done
manually in that case.

[7] These are all installs with root on ext4 or xfs and installs
with root on ZFS on non-EFI systems

[8] Booting ZFS on root with GRUB
https://github.com/zfsonlinux/zfs/wiki/Debian-Stretch-Root-on-ZFS

[9] GRUB Manual https://www.gnu.org/software/grub/manual/grub/grub.html

[10] Systems using proxmox-boot-tool will call proxmox-boot-tool
refresh upon update-grub.

3.14. Kernel Samepage Merging (KSM)

Kernel Samepage Merging (KSM) is an optional memory deduplication feature
offered by the Linux kernel, which is enabled by default in Proxmox VE. KSM
works by scanning a range of physical memory pages for identical content, and
identifying the virtual pages that are mapped to them. If identical pages are
found, the corresponding virtual pages are re-mapped so that they all point to
the same physical page, and the old pages are freed. The virtual pages are
marked as "copy-on-write", so that any writes to them will be written to a new
area of memory, leaving the shared physical page intact.
3.14.1. Implications of KSM

KSM can optimize memory usage in virtualization environments, as multiple VMs
running similar operating systems or workloads could potentially share a lot of
common memory pages.
However, while KSM can reduce memory usage, it also comes with some security
risks, as it can expose VMs to side-channel attacks. Research has shown that it
is possible to infer information about a running VM via a second VM on the same
host, by exploiting certain characteristics of KSM.
Thus, if you are using Proxmox VE to provide hosting services, you should consider
disabling KSM, in order to provide your users with additional security.
Furthermore, you should check your country’s regulations, as disabling KSM may
be a legal requirement.

3.14.2. Disabling KSM

To see if KSM is active, you can check the output of:
systemctl status ksmtuned
If it is, it can be disabled immediately with:
systemctl disable --now ksmtuned
Finally, to unmerge all the currently merged pages, run:
echo 2 > /sys/kernel/mm/ksm/run

Chapter 4. Graphical User Interface

Proxmox VE is simple. There is no need to install a separate management
tool, and everything can be done through your web browser (Latest
Firefox or Google Chrome is preferred). A built-in HTML5 console is
used to access the guest console. As an alternative,
SPICE can be used.
Because we use the Proxmox cluster file system (pmxcfs), you can
connect to any node to manage the entire cluster. Each node can manage
the entire cluster. There is no need for a dedicated manager node.
You can use the web-based administration interface with any modern
browser. When Proxmox VE detects that you are connecting from a mobile
device, you are redirected to a simpler, touch-based user interface.
The web interface can be reached via https://youripaddress:8006
(default login is: root, and the password is specified during the
installation process).

4.1. Features

	
Seamless integration and management of Proxmox VE clusters

	
AJAX technologies for dynamic updates of resources

	
Secure access to all Virtual Machines and Containers via SSL
 encryption (https)

	
Fast search-driven interface, capable of handling hundreds and
 probably thousands of VMs

	
Secure HTML5 console or SPICE

	
Role based permission management for all objects (VMs, storages,
 nodes, etc.)

	
Support for multiple authentication sources (e.g. local, MS ADS,
 LDAP, …)

	
Two-Factor Authentication (OATH, Yubikey)

	
Based on ExtJS 7.x JavaScript framework

4.2. Login

[image: screenshot/gui-login-window.png]
When you connect to the server, you will first see the login window.
Proxmox VE supports various authentication backends (Realm), and
you can select the language here. The GUI is translated to more
than 20 languages.
Note
You can save the user name on the client side by selecting the
checkbox at the bottom. This saves some typing when you login next
time.

4.3. GUI Overview

[image: screenshot/gui-datacenter-summary.png]
The Proxmox VE user interface consists of four regions.
	

Header

	

On top. Shows status information and contains buttons for
most important actions.

	

Resource Tree

	

At the left side. A navigation tree where you can select
specific objects.

	

Content Panel

	

Center region. Selected objects display configuration
options and status here.

	

Log Panel

	

At the bottom. Displays log entries for recent tasks. You
can double-click on those log entries to get more details, or to abort
a running task.

Note
You can shrink and expand the size of the resource tree and log
panel, or completely hide the log panel. This can be helpful when you
work on small displays and want more space to view other content.

4.3.1. Header

On the top left side, the first thing you see is the Proxmox
logo. Next to it is the current running version of Proxmox VE. In the
search bar nearside you can search for specific objects (VMs,
containers, nodes, …). This is sometimes faster than selecting an
object in the resource tree.
The right part of the header contains four buttons:
	

Documentation

	

Opens a new browser window showing the reference documentation.

	

Create VM

	

Opens the virtual machine creation wizard.

	

Create CT

	

Open the container creation wizard.

	

User Menu

	

Displays the identity of the user you’re currently logged in
with, and clicking it opens a menu with user-specific options.

In the user menu, you’ll find the My Settings dialog, which provides local UI
settings. Below that, there are shortcuts for TFA (Two-Factor Authentication)
and Password self-service. You’ll also find options to change the Language
and the Color Theme. Finally, at the bottom of the menu is the Logout
option.

4.3.2. My Settings

[image: screenshot/gui-my-settings.png]
The My Settings window allows you to set locally stored settings. These
include the Dashboard Storages which allow you to enable or disable specific
storages to be counted towards the total amount visible in the datacenter
summary. If no storage is checked the total is the sum of all storages, same
as enabling every single one.
Below the dashboard settings you find the stored user name and a button to
clear it as well as a button to reset every layout in the GUI to its default.
On the right side there are xterm.js Settings. These contain the following
options:
	

Font-Family

	

The font to be used in xterm.js (e.g. Arial).

	

Font-Size

	

The preferred font size to be used.

	

Letter Spacing

	

Increases or decreases spacing between letters in text.

	

Line Height

	

Specify the absolute height of a line.

4.3.3. Resource Tree

This is the main navigation tree. On top of the tree you can select
some predefined views, which change the structure of the tree
below. The default view is the Server View, and it shows the following
object types:
	

Datacenter

	

Contains cluster-wide settings (relevant for all nodes).

	

Node

	

Represents the hosts inside a cluster, where the guests run.

	

Guest

	

VMs, containers and templates.

	

Storage

	

Data Storage.

	

Pool

	

It is possible to group guests using a pool to simplify
management.

The following view types are available:
	

Server View

	

Shows all kinds of objects, grouped by nodes.

	

Folder View

	

Shows all kinds of objects, grouped by object type.

	

Pool View

	

Show VMs and containers, grouped by pool.

4.3.4. Log Panel

The main purpose of the log panel is to show you what is currently
going on in your cluster. Actions like creating an new VM are executed
in the background, and we call such a background job a task.
Any output from such a task is saved into a separate log file. You can
view that log by simply double-click a task log entry. It is also
possible to abort a running task there.
Please note that we display the most recent tasks from all cluster nodes
here. So you can see when somebody else is working on another cluster
node in real-time.
Note
We remove older and finished task from the log panel to keep
that list short. But you can still find those tasks within the node panel in the
Task History.

Some short-running actions simply send logs to all cluster
members. You can see those messages in the Cluster log panel.

4.4. Content Panels

When you select an item from the resource tree, the corresponding
object displays configuration and status information in the content
panel. The following sections provide a brief overview of this
functionality. Please refer to the corresponding chapters in the
reference documentation to get more detailed information.
4.4.1. Datacenter

[image: screenshot/gui-datacenter-search.png]
On the datacenter level, you can access cluster-wide settings and information.
	
Search: perform a cluster-wide search for nodes, VMs, containers, storage
 devices, and pools.

	
Summary: gives a brief overview of the cluster’s health and resource usage.

	
Cluster: provides the functionality and information necessary to create or
 join a cluster.

	
Options: view and manage cluster-wide default settings.

	
Storage: provides an interface for managing cluster storage.

	
Backup: schedule backup jobs. This operates cluster wide, so it doesn’t
 matter where the VMs/containers are on your cluster when scheduling.

	
Replication: view and manage replication jobs.

	
Permissions: manage user, group, and API token permissions, and LDAP,
 MS-AD and Two-Factor authentication.

	
HA: manage Proxmox VE High Availability.

	
ACME: set up ACME (Let’s Encrypt) certificates for server nodes.

	
Firewall: configure and make templates for the Proxmox Firewall cluster wide.

	
Metric Server: define external metric servers for Proxmox VE.

	
Notifications: configurate notification behavior and targets for Proxmox VE.

	
Support: display information about your support subscription.

4.4.2. Nodes

[image: screenshot/gui-node-summary.png]
Nodes in your cluster can be managed individually at this level.
The top header has useful buttons such as Reboot, Shutdown, Shell,
Bulk Actions and Help.
Shell has the options noVNC, SPICE and xterm.js.
Bulk Actions has the options Bulk Start, Bulk Shutdown and Bulk Migrate.
	
Search: search a node for VMs, containers, storage devices, and pools.

	
Summary: display a brief overview of the node’s resource usage.

	
Notes: write custom comments in Markdown syntax.

	
Shell: access to a shell interface for the node.

	
System: configure network, DNS and time settings, and access the syslog.

	
Updates: upgrade the system and see the available new packages.

	
Firewall: manage the Proxmox Firewall for a specific node.

	
Disks: get an overview of the attached disks, and manage how they are used.

	
Ceph: is only used if you have installed a Ceph server on your
 host. In this case, you can manage your Ceph cluster and see the status
 of it here.

	
Replication: view and manage replication jobs.

	
Task History: see a list of past tasks.

	
Subscription: upload a subscription key, and generate a system report for
 use in support cases.

4.4.3. Guests

[image: screenshot/gui-qemu-summary.png]
There are two different kinds of guests and both can be converted to a template.
One of them is a Kernel-based Virtual Machine (KVM) and the other is a Linux Container (LXC).
Navigation for these are mostly the same; only some options are different.
To access the various guest management interfaces, select a VM or container from
the menu on the left.
The header contains commands for items such as power management, migration,
console access and type, cloning, HA, and help.
Some of these buttons contain drop-down menus, for example, Shutdown also contains
other power options, and Console contains the different console types:
SPICE, noVNC and xterm.js.
The panel on the right contains an interface for whatever item is selected from
the menu on the left.
The available interfaces are as follows.
	
Summary: provides a brief overview of the VM’s activity and a Notes field
 for Markdown syntax comments.

	
Console: access to an interactive console for the VM/container.

	
(KVM)Hardware: define the hardware available to the KVM VM.

	
(LXC)Resources: define the system resources available to the LXC.

	
(LXC)Network: configure a container’s network settings.

	
(LXC)DNS: configure a container’s DNS settings.

	
Options: manage guest options.

	
Task History: view all previous tasks related to the selected guest.

	
(KVM) Monitor: an interactive communication interface to the KVM process.

	
Backup: create and restore system backups.

	
Replication: view and manage the replication jobs for the selected guest.

	
Snapshots: create and restore VM snapshots.

	
Firewall: configure the firewall on the VM level.

	
Permissions: manage permissions for the selected guest.

4.4.4. Storage

[image: screenshot/gui-storage-summary-local.png]
As with the guest interface, the interface for storage consists of a menu on the
left for certain storage elements and an interface on the right to manage
these elements.
In this view we have a two partition split-view.
On the left side we have the storage options
and on the right side the content of the selected option will be shown.
	
Summary: shows important information about the storage, such as the type,
 usage, and content which it stores.

	
Content: a menu item for each content type which the storage
 stores, for example, Backups, ISO Images, CT Templates.

	
Permissions: manage permissions for the storage.

4.4.5. Pools

[image: screenshot/gui-pool-summary-development.png]
Again, the pools view comprises two partitions: a menu on the left,
and the corresponding interfaces for each menu item on the right.
	
Summary: shows a description of the pool.

	
Members: display and manage pool members (guests and storage).

	
Permissions: manage the permissions for the pool.

4.5. Tags

[image: screenshot/gui-qemu-summary-tags-edit.png]
For organizational purposes, it is possible to set tags for guests.
Currently, these only provide informational value to users.
Tags are displayed in two places in the web interface: in the Resource Tree and
in the status line when a guest is selected.
Tags can be added, edited, and removed in the status line of the guest by
clicking on the pencil icon. You can add multiple tags by pressing the +
button and remove them by pressing the - button. To save or cancel the changes,
you can use the ✓ and x button respectively.
Tags can also be set via the CLI, where multiple tags are separated by semicolons.
For example:
qm set ID --tags myfirsttag;mysecondtag
4.5.1. Style Configuration

[image: screenshot/gui-datacenter-tag-style.png]
By default, the tag colors are derived from their text in a deterministic way.
The color, shape in the resource tree, and case-sensitivity, as well as how tags
are sorted, can be customized. This can be done via the web interface under
Datacenter → Options → Tag Style Override. Alternatively, this can be done
via the CLI. For example:
pvesh set /cluster/options --tag-style color-map=example:000000:FFFFFF
sets the background color of the tag example to black (#000000) and the text
color to white (#FFFFFF).

4.5.2. Permissions

[image: screenshot/gui-datacenter-options.png]
By default, users with the privilege VM.Config.Options on a guest (/vms/ID)
can set any tags they want (see
Permission Management). If you want to
restrict this behavior, appropriate permissions can be set under
Datacenter → Options → User Tag Access:
	
free: users are not restricted in setting tags (Default)

	
list: users can set tags based on a predefined list of tags

	
existing: like list but users can also use already existing tags

	
none: users are restricted from using tags

The same can also be done via the CLI.
Note that a user with the Sys.Modify privileges on / is always able to set
or delete any tags, regardless of the settings here. Additionally, there is a
configurable list of registered tags which can only be added and removed by
users with the privilege Sys.Modify on /. The list of registered tags can be
edited under Datacenter → Options → Registered Tags or via the CLI.
For more details on the exact options and how to invoke them in the CLI, see
Datacenter Configuration.

Chapter 5. Cluster Manager

The Proxmox VE cluster manager pvecm is a tool to create a group of
physical servers. Such a group is called a cluster. We use the
Corosync Cluster Engine for reliable group
communication. There’s no explicit limit for the number of nodes in a cluster.
In practice, the actual possible node count may be limited by the host and
network performance. Currently (2021), there are reports of clusters (using
high-end enterprise hardware) with over 50 nodes in production.
pvecm can be used to create a new cluster, join nodes to a cluster,
leave the cluster, get status information, and do various other cluster-related
tasks. The Proxmox Cluster File System (“pmxcfs”)
is used to transparently distribute the cluster configuration to all cluster
nodes.
Grouping nodes into a cluster has the following advantages:
	
Centralized, web-based management

	
Multi-master clusters: each node can do all management tasks

	
Use of pmxcfs, a database-driven file system, for storing configuration
 files, replicated in real-time on all nodes using corosync

	
Easy migration of virtual machines and containers between physical
 hosts

	
Fast deployment

	
Cluster-wide services like firewall and HA

5.1. Requirements

	
All nodes must be able to connect to each other via UDP ports 5405-5412
 for corosync to work.

	
Date and time must be synchronized.

	
An SSH tunnel on TCP port 22 between nodes is required.

	
If you are interested in High Availability, you need to have at
 least three nodes for reliable quorum. All nodes should have the
 same version.

	
We recommend a dedicated NIC for the cluster traffic, especially if
 you use shared storage.

	
The root password of a cluster node is required for adding nodes.

	
Online migration of virtual machines is only supported when nodes have CPUs
 from the same vendor. It might work otherwise, but this is never guaranteed.

Note
It is not possible to mix Proxmox VE 3.x and earlier with Proxmox VE 4.X cluster
nodes.

Note
While it’s possible to mix Proxmox VE 4.4 and Proxmox VE 5.0 nodes, doing so is
not supported as a production configuration and should only be done temporarily,
during an upgrade of the whole cluster from one major version to another.

Note
Running a cluster of Proxmox VE 6.x with earlier versions is not possible. The
cluster protocol (corosync) between Proxmox VE 6.x and earlier versions changed
fundamentally. The corosync 3 packages for Proxmox VE 5.4 are only intended for the
upgrade procedure to Proxmox VE 6.0.

5.2. Preparing Nodes

First, install Proxmox VE on all nodes. Make sure that each node is
installed with the final hostname and IP configuration. Changing the
hostname and IP is not possible after cluster creation.
While it’s common to reference all node names and their IPs in /etc/hosts (or
make their names resolvable through other means), this is not necessary for a
cluster to work. It may be useful however, as you can then connect from one node
to another via SSH, using the easier to remember node name (see also
Link Address Types). Note that we always
recommend referencing nodes by their IP addresses in the cluster configuration.

5.3. Create a Cluster

You can either create a cluster on the console (login via ssh), or through
the API using the Proxmox VE web interface (Datacenter → Cluster).
Note
Use a unique name for your cluster. This name cannot be changed later.
The cluster name follows the same rules as node names.

5.3.1. Create via Web GUI

[image: screenshot/gui-cluster-create.png]
Under Datacenter → Cluster, click on Create Cluster. Enter the cluster
name and select a network connection from the drop-down list to serve as the
main cluster network (Link 0). It defaults to the IP resolved via the node’s
hostname.
As of Proxmox VE 6.2, up to 8 fallback links can be added to a cluster. To add a
redundant link, click the Add button and select a link number and IP address
from the respective fields. Prior to Proxmox VE 6.2, to add a second link as
fallback, you can select the Advanced checkbox and choose an additional
network interface (Link 1, see also Corosync Redundancy).
Note
Ensure that the network selected for cluster communication is not used for
any high traffic purposes, like network storage or live-migration.
While the cluster network itself produces small amounts of data, it is very
sensitive to latency. Check out full
cluster network requirements.

5.3.2. Create via the Command Line

Login via ssh to the first Proxmox VE node and run the following command:
 hp1# pvecm create CLUSTERNAME
To check the state of the new cluster use:
 hp1# pvecm status

5.3.3. Multiple Clusters in the Same Network

It is possible to create multiple clusters in the same physical or logical
network. In this case, each cluster must have a unique name to avoid possible
clashes in the cluster communication stack. Furthermore, this helps avoid human
confusion by making clusters clearly distinguishable.
While the bandwidth requirement of a corosync cluster is relatively low, the
latency of packages and the package per second (PPS) rate is the limiting
factor. Different clusters in the same network can compete with each other for
these resources, so it may still make sense to use separate physical network
infrastructure for bigger clusters.

5.4. Adding Nodes to the Cluster

Caution
All existing configuration in /etc/pve is overwritten when joining a
cluster. In particular, a joining node cannot hold any guests, since guest IDs
could otherwise conflict, and the node will inherit the cluster’s storage
configuration. To join a node with existing guest, as a workaround, you can
create a backup of each guest (using vzdump) and restore it under a different
ID after joining. If the node’s storage layout differs, you will need to re-add
the node’s storages, and adapt each storage’s node restriction to reflect on
which nodes the storage is actually available.

5.4.1. Join Node to Cluster via GUI

[image: screenshot/gui-cluster-join-information.png]
Log in to the web interface on an existing cluster node. Under Datacenter →
Cluster, click the Join Information button at the top. Then, click on the
button Copy Information. Alternatively, copy the string from the Information
field manually.
[image: screenshot/gui-cluster-join.png]
Next, log in to the web interface on the node you want to add.
Under Datacenter → Cluster, click on Join Cluster. Fill in the
Information field with the Join Information text you copied earlier.
Most settings required for joining the cluster will be filled out
automatically. For security reasons, the cluster password has to be entered
manually.
Note
To enter all required data manually, you can disable the Assisted Join
checkbox.

After clicking the Join button, the cluster join process will start
immediately. After the node has joined the cluster, its current node certificate
will be replaced by one signed from the cluster certificate authority (CA).
This means that the current session will stop working after a few seconds. You
then might need to force-reload the web interface and log in again with the
cluster credentials.
Now your node should be visible under Datacenter → Cluster.

5.4.2. Join Node to Cluster via Command Line

Log in to the node you want to join into an existing cluster via ssh.
 # pvecm add IP-ADDRESS-CLUSTER
For IP-ADDRESS-CLUSTER, use the IP or hostname of an existing cluster node.
An IP address is recommended (see Link Address Types).
To check the state of the cluster use:
 # pvecm status
Cluster status after adding 4 nodes.

 # pvecm status
Cluster information
~~~~~~~~~~~~~~~~~~~
Name:             prod-central
Config Version:   3
Transport:        knet
Secure auth:      on

Quorum information
~~~~~~~~~~~~~~~~~~
Date: Tue Sep 14 11:06:47 2021
Quorum provider: corosync_votequorum
Nodes: 4
Node ID: 0x00000001
Ring ID: 1.1a8
Quorate: Yes

Votequorum information
~~~~~~~~~~~~~~~~~~~~~~
Expected votes:   4
Highest expected: 4
Total votes:      4
Quorum:           3
Flags:            Quorate

Membership information
~~~~~~~~~~~~~~~~~~~~~~
 Nodeid Votes Name
0x00000001 1 192.168.15.91
0x00000002 1 192.168.15.92 (local)
0x00000003 1 192.168.15.93
0x00000004 1 192.168.15.94

If you only want a list of all nodes, use:
 # pvecm nodes
List nodes in a cluster.

 # pvecm nodes

Membership information
~~~~~~~~~~~~~~~~~~~~~~
    Nodeid      Votes Name
         1          1 hp1
         2          1 hp2 (local)
         3          1 hp3
         4          1 hp4



5.4.3. Adding Nodes with Separated Cluster Network



When adding a node to a cluster with a separated cluster network, you need to
use the link0 parameter to set the nodes address on that network:
# pvecm add IP-ADDRESS-CLUSTER --link0 LOCAL-IP-ADDRESS-LINK0
If you want to use the built-in redundancy of the
Kronosnet transport layer, also use the link1 parameter.
Using the GUI, you can select the correct interface from the corresponding
Link X fields in the Cluster Join dialog.


5.5. Remove a Cluster Node



Caution
Read the procedure carefully before proceeding, as it may
not be what you want or need.

Move all virtual machines from the node. Ensure that you have made copies of any
local data or backups that you want to keep. In addition, make sure to remove
any scheduled replication jobs to the node to be removed.
Caution
Failure to remove replication jobs to a node before removing said node
will result in the replication job becoming irremovable. Especially note that
replication automatically switches direction if a replicated VM is migrated, so
by migrating a replicated VM from a node to be deleted, replication jobs will be
set up to that node automatically.

In the following example, we will remove the node hp4 from the cluster.
Log in to a different cluster node (not hp4), and issue a pvecm nodes
command to identify the node ID to remove:
 hp1# pvecm nodes

Membership information
~~~~~~~~~~~~~~~~~~~~~~
 Nodeid Votes Name
 1 1 hp1 (local)
 2 1 hp2
 3 1 hp3
 4 1 hp4
At this point, you must power off hp4 and ensure that it will not power on
again (in the network) with its current configuration.
Important
As mentioned above, it is critical to power off the node
before removal, and make sure that it will not power on again
(in the existing cluster network) with its current configuration.
If you power on the node as it is, the cluster could end up broken,
and it could be difficult to restore it to a functioning state.

After powering off the node hp4, we can safely remove it from the cluster.
 hp1# pvecm delnode hp4
 Killing node 4
Note
At this point, it is possible that you will receive an error message
stating Could not kill node (error = CS_ERR_NOT_EXIST). This does not
signify an actual failure in the deletion of the node, but rather a failure in
corosync trying to kill an offline node. Thus, it can be safely ignored.

Use pvecm nodes or pvecm status to check the node list again. It should
look something like:
hp1# pvecm status

...

Votequorum information
~~~~~~~~~~~~~~~~~~~~~~
Expected votes:   3
Highest expected: 3
Total votes:      3
Quorum:           2
Flags:            Quorate

Membership information
~~~~~~~~~~~~~~~~~~~~~~
 Nodeid Votes Name
0x00000001 1 192.168.15.90 (local)
0x00000002 1 192.168.15.91
0x00000003 1 192.168.15.92
If, for whatever reason, you want this server to join the same cluster again,
you have to:
	
do a fresh install of Proxmox VE on it,

	
then join it, as explained in the previous section.

The configuration files for the removed node will still reside in
/etc/pve/nodes/hp4. Recover any configuration you still need and remove the
directory afterwards.
Note
After removal of the node, its SSH fingerprint will still reside in the
known_hosts of the other nodes. If you receive an SSH error after rejoining
a node with the same IP or hostname, run pvecm updatecerts once on the
re-added node to update its fingerprint cluster wide.

5.5.1. Separate a Node Without Reinstalling

Caution
This is not the recommended method, proceed with caution. Use the
previous method if you’re unsure.

You can also separate a node from a cluster without reinstalling it from
scratch. But after removing the node from the cluster, it will still have
access to any shared storage. This must be resolved before you start removing
the node from the cluster. A Proxmox VE cluster cannot share the exact same
storage with another cluster, as storage locking doesn’t work over the cluster
boundary. Furthermore, it may also lead to VMID conflicts.
It’s suggested that you create a new storage, where only the node which you want
to separate has access. This can be a new export on your NFS or a new Ceph
pool, to name a few examples. It’s just important that the exact same storage
does not get accessed by multiple clusters. After setting up this storage, move
all data and VMs from the node to it. Then you are ready to separate the
node from the cluster.
Warning
Ensure that all shared resources are cleanly separated! Otherwise you
will run into conflicts and problems.

First, stop the corosync and pve-cluster services on the node:
systemctl stop pve-cluster
systemctl stop corosync
Start the cluster file system again in local mode:
pmxcfs -l
Delete the corosync configuration files:
rm /etc/pve/corosync.conf
rm -r /etc/corosync/*
You can now start the file system again as a normal service:
killall pmxcfs
systemctl start pve-cluster
The node is now separated from the cluster. You can deleted it from any
remaining node of the cluster with:
pvecm delnode oldnode
If the command fails due to a loss of quorum in the remaining node, you can set
the expected votes to 1 as a workaround:
pvecm expected 1
And then repeat the pvecm delnode command.
Now switch back to the separated node and delete all the remaining cluster
files on it. This ensures that the node can be added to another cluster again
without problems.
rm /var/lib/corosync/*
As the configuration files from the other nodes are still in the cluster
file system, you may want to clean those up too. After making absolutely sure
that you have the correct node name, you can simply remove the entire
directory recursively from /etc/pve/nodes/NODENAME.
Caution
The node’s SSH keys will remain in the authorized_key file. This
means that the nodes can still connect to each other with public key
authentication. You should fix this by removing the respective keys from the
/etc/pve/priv/authorized_keys file.

5.6. Quorum

Proxmox VE use a quorum-based technique to provide a consistent state among
all cluster nodes.
	 	A quorum is the minimum number of votes that a distributed transaction
has to obtain in order to be allowed to perform an operation in a
distributed system.
	
	 	--
from Wikipedia
Quorum (distributed computing)

In case of network partitioning, state changes requires that a
majority of nodes are online. The cluster switches to read-only mode
if it loses quorum.
Note
Proxmox VE assigns a single vote to each node by default.

5.7. Cluster Network

The cluster network is the core of a cluster. All messages sent over it have to
be delivered reliably to all nodes in their respective order. In Proxmox VE this
part is done by corosync, an implementation of a high performance, low overhead,
high availability development toolkit. It serves our decentralized configuration
file system (pmxcfs).
5.7.1. Network Requirements

The Proxmox VE cluster stack requires a reliable network with latencies under 5
milliseconds (LAN performance) between all nodes to operate stably. While on
setups with a small node count a network with higher latencies may work, this
is not guaranteed and gets rather unlikely with more than three nodes and
latencies above around 10 ms.
The network should not be used heavily by other members, as while corosync does
not uses much bandwidth it is sensitive to latency jitters; ideally corosync
runs on its own physically separated network. Especially do not use a shared
network for corosync and storage (except as a potential low-priority fallback
in a redundant configuration).
Before setting up a cluster, it is good practice to check if the network is fit
for that purpose. To ensure that the nodes can connect to each other on the
cluster network, you can test the connectivity between them with the ping
tool.
If the Proxmox VE firewall is enabled, ACCEPT rules for corosync will automatically
be generated - no manual action is required.
Note
Corosync used Multicast before version 3.0 (introduced in Proxmox VE 6.0).
Modern versions rely on Kronosnet for cluster
communication, which, for now, only supports regular UDP unicast.

Caution
You can still enable Multicast or legacy unicast by setting your
transport to udp or udpu in your corosync.conf,
but keep in mind that this will disable all cryptography and redundancy support.
This is therefore not recommended.

5.7.2. Separate Cluster Network

When creating a cluster without any parameters, the corosync cluster network is
generally shared with the web interface and the VMs' network. Depending on
your setup, even storage traffic may get sent over the same network. It’s
recommended to change that, as corosync is a time-critical, real-time
application.
Setting Up a New Network

First, you have to set up a new network interface. It should be on a physically
separate network. Ensure that your network fulfills the
cluster network requirements.

Separate On Cluster Creation

This is possible via the linkX parameters of the pvecm create
command, used for creating a new cluster.
If you have set up an additional NIC with a static address on 10.10.10.1/25,
and want to send and receive all cluster communication over this interface,
you would execute:
pvecm create test --link0 10.10.10.1
To check if everything is working properly, execute:
systemctl status corosync
Afterwards, proceed as described above to
add nodes with a separated cluster network.

Separate After Cluster Creation

You can do this if you have already created a cluster and want to switch
its communication to another network, without rebuilding the whole cluster.
This change may lead to short periods of quorum loss in the cluster, as nodes
have to restart corosync and come up one after the other on the new network.
Check how to edit the corosync.conf file first.
Then, open it and you should see a file similar to:
logging {
 debug: off
 to_syslog: yes
}

nodelist {

 node {
 name: due
 nodeid: 2
 quorum_votes: 1
 ring0_addr: due
 }

 node {
 name: tre
 nodeid: 3
 quorum_votes: 1
 ring0_addr: tre
 }

 node {
 name: uno
 nodeid: 1
 quorum_votes: 1
 ring0_addr: uno
 }

}

quorum {
 provider: corosync_votequorum
}

totem {
 cluster_name: testcluster
 config_version: 3
 ip_version: ipv4-6
 secauth: on
 version: 2
 interface {
 linknumber: 0
 }

}
Note
ringX_addr actually specifies a corosync link address. The name "ring"
is a remnant of older corosync versions that is kept for backwards
compatibility.

The first thing you want to do is add the name properties in the node entries,
if you do not see them already. Those must match the node name.
Then replace all addresses from the ring0_addr properties of all nodes with
the new addresses. You may use plain IP addresses or hostnames here. If you use
hostnames, ensure that they are resolvable from all nodes (see also
Link Address Types).
In this example, we want to switch cluster communication to the
10.10.10.0/25 network, so we change the ring0_addr of each node respectively.
Note
The exact same procedure can be used to change other ringX_addr values
as well. However, we recommend only changing one link address at a time, so
that it’s easier to recover if something goes wrong.

After we increase the config_version property, the new configuration file
should look like:
logging {
 debug: off
 to_syslog: yes
}

nodelist {

 node {
 name: due
 nodeid: 2
 quorum_votes: 1
 ring0_addr: 10.10.10.2
 }

 node {
 name: tre
 nodeid: 3
 quorum_votes: 1
 ring0_addr: 10.10.10.3
 }

 node {
 name: uno
 nodeid: 1
 quorum_votes: 1
 ring0_addr: 10.10.10.1
 }

}

quorum {
 provider: corosync_votequorum
}

totem {
 cluster_name: testcluster
 config_version: 4
 ip_version: ipv4-6
 secauth: on
 version: 2
 interface {
 linknumber: 0
 }

}
Then, after a final check to see that all changed information is correct, we
save it and once again follow the
edit corosync.conf file section to bring it into
effect.
The changes will be applied live, so restarting corosync is not strictly
necessary. If you changed other settings as well, or notice corosync
complaining, you can optionally trigger a restart.
On a single node execute:
systemctl restart corosync
Now check if everything is okay:
systemctl status corosync
If corosync begins to work again, restart it on all other nodes too.
They will then join the cluster membership one by one on the new network.

5.7.3. Corosync Addresses

A corosync link address (for backwards compatibility denoted by ringX_addr in
corosync.conf) can be specified in two ways:
	
IPv4/v6 addresses can be used directly. They are recommended, since they
are static and usually not changed carelessly.

	
Hostnames will be resolved using getaddrinfo, which means that by
default, IPv6 addresses will be used first, if available (see also
man gai.conf). Keep this in mind, especially when upgrading an existing
cluster to IPv6.

Caution
Hostnames should be used with care, since the addresses they
resolve to can be changed without touching corosync or the node it runs on -
which may lead to a situation where an address is changed without thinking
about implications for corosync.

A separate, static hostname specifically for corosync is recommended, if
hostnames are preferred. Also, make sure that every node in the cluster can
resolve all hostnames correctly.
Since Proxmox VE 5.1, while supported, hostnames will be resolved at the time of
entry. Only the resolved IP is saved to the configuration.
Nodes that joined the cluster on earlier versions likely still use their
unresolved hostname in corosync.conf. It might be a good idea to replace
them with IPs or a separate hostname, as mentioned above.

5.8. Corosync Redundancy

Corosync supports redundant networking via its integrated Kronosnet layer by
default (it is not supported on the legacy udp/udpu transports). It can be
enabled by specifying more than one link address, either via the --linkX
parameters of pvecm, in the GUI as Link 1 (while creating a cluster or
adding a new node) or by specifying more than one ringX_addr in
corosync.conf.
Note
To provide useful failover, every link should be on its own
physical network connection.

Links are used according to a priority setting. You can configure this priority
by setting knet_link_priority in the corresponding interface section in
corosync.conf, or, preferably, using the priority parameter when creating
your cluster with pvecm:
 # pvecm create CLUSTERNAME --link0 10.10.10.1,priority=15 --link1 10.20.20.1,priority=20
This would cause link1 to be used first, since it has the higher priority.
If no priorities are configured manually (or two links have the same priority),
links will be used in order of their number, with the lower number having higher
priority.
Even if all links are working, only the one with the highest priority will see
corosync traffic. Link priorities cannot be mixed, meaning that links with
different priorities will not be able to communicate with each other.
Since lower priority links will not see traffic unless all higher priorities
have failed, it becomes a useful strategy to specify networks used for
other tasks (VMs, storage, etc.) as low-priority links. If worst comes to
worst, a higher latency or more congested connection might be better than no
connection at all.
5.8.1. Adding Redundant Links To An Existing Cluster

To add a new link to a running configuration, first check how to
edit the corosync.conf file.
Then, add a new ringX_addr to every node in the nodelist section. Make
sure that your X is the same for every node you add it to, and that it is
unique for each node.
Lastly, add a new interface, as shown below, to your totem
section, replacing X with the link number chosen above.
Assuming you added a link with number 1, the new configuration file could look
like this:
logging {
 debug: off
 to_syslog: yes
}

nodelist {

 node {
 name: due
 nodeid: 2
 quorum_votes: 1
 ring0_addr: 10.10.10.2
 ring1_addr: 10.20.20.2
 }

 node {
 name: tre
 nodeid: 3
 quorum_votes: 1
 ring0_addr: 10.10.10.3
 ring1_addr: 10.20.20.3
 }

 node {
 name: uno
 nodeid: 1
 quorum_votes: 1
 ring0_addr: 10.10.10.1
 ring1_addr: 10.20.20.1
 }

}

quorum {
 provider: corosync_votequorum
}

totem {
 cluster_name: testcluster
 config_version: 4
 ip_version: ipv4-6
 secauth: on
 version: 2
 interface {
 linknumber: 0
 }
 interface {
 linknumber: 1
 }
}
The new link will be enabled as soon as you follow the last steps to
edit the corosync.conf file. A restart should not
be necessary. You can check that corosync loaded the new link using:
journalctl -b -u corosync
It might be a good idea to test the new link by temporarily disconnecting the
old link on one node and making sure that its status remains online while
disconnected:
pvecm status
If you see a healthy cluster state, it means that your new link is being used.

5.9. Role of SSH in Proxmox VE Clusters

Proxmox VE utilizes SSH tunnels for various features.
	
Proxying console/shell sessions (node and guests)

When using the shell for node B while being connected to node A, connects to a
terminal proxy on node A, which is in turn connected to the login shell on node
B via a non-interactive SSH tunnel.

	
VM and CT memory and local-storage migration in secure mode.

During the migration, one or more SSH tunnel(s) are established between the
source and target nodes, in order to exchange migration information and
transfer memory and disk contents.

	
Storage replication

Pitfalls due to automatic execution of .bashrc and siblings
In case you have a custom .bashrc, or similar files that get executed on
login by the configured shell, ssh will automatically run it once the session
is established successfully. This can cause some unexpected behavior, as those
commands may be executed with root permissions on any of the operations
described above. This can cause possible problematic side-effects!
In order to avoid such complications, it’s recommended to add a check in
/root/.bashrc to make sure the session is interactive, and only then run
.bashrc commands.
You can add this snippet at the beginning of your .bashrc file:
Early exit if not running interactively to avoid side-effects!
case $- in
 i) ;;
 *) return;;
esac

5.10. Corosync External Vote Support

This section describes a way to deploy an external voter in a Proxmox VE cluster.
When configured, the cluster can sustain more node failures without
violating safety properties of the cluster communication.
For this to work, there are two services involved:
	
A QDevice daemon which runs on each Proxmox VE node

	
An external vote daemon which runs on an independent server

As a result, you can achieve higher availability, even in smaller setups (for
example 2+1 nodes).
5.10.1. QDevice Technical Overview

The Corosync Quorum Device (QDevice) is a daemon which runs on each cluster
node. It provides a configured number of votes to the cluster’s quorum
subsystem, based on an externally running third-party arbitrator’s decision.
Its primary use is to allow a cluster to sustain more node failures than
standard quorum rules allow. This can be done safely as the external device
can see all nodes and thus choose only one set of nodes to give its vote.
This will only be done if said set of nodes can have quorum (again) after
receiving the third-party vote.
Currently, only QDevice Net is supported as a third-party arbitrator. This is
a daemon which provides a vote to a cluster partition, if it can reach the
partition members over the network. It will only give votes to one partition
of a cluster at any time.
It’s designed to support multiple clusters and is almost configuration and
state free. New clusters are handled dynamically and no configuration file
is needed on the host running a QDevice.
The only requirements for the external host are that it needs network access to
the cluster and to have a corosync-qnetd package available. We provide a package
for Debian based hosts, and other Linux distributions should also have a package
available through their respective package manager.
Note
Unlike corosync itself, a QDevice connects to the cluster over TCP/IP.
The daemon can also run outside the LAN of the cluster and isn’t limited to the
low latencies requirements of corosync.

5.10.2. Supported Setups

We support QDevices for clusters with an even number of nodes and recommend
it for 2 node clusters, if they should provide higher availability.
For clusters with an odd node count, we currently discourage the use of
QDevices. The reason for this is the difference in the votes which the QDevice
provides for each cluster type. Even numbered clusters get a single additional
vote, which only increases availability, because if the QDevice
itself fails, you are in the same position as with no QDevice at all.
On the other hand, with an odd numbered cluster size, the QDevice provides
(N-1) votes — where N corresponds to the cluster node count. This
alternative behavior makes sense; if it had only one additional vote, the
cluster could get into a split-brain situation. This algorithm allows for all
nodes but one (and naturally the QDevice itself) to fail. However, there are two
drawbacks to this:
	
If the QNet daemon itself fails, no other node may fail or the cluster
 immediately loses quorum. For example, in a cluster with 15 nodes, 7
 could fail before the cluster becomes inquorate. But, if a QDevice is
 configured here and it itself fails, no single node of the 15 may fail.
 The QDevice acts almost as a single point of failure in this case.

	
The fact that all but one node plus QDevice may fail sounds promising at
 first, but this may result in a mass recovery of HA services, which could
 overload the single remaining node. Furthermore, a Ceph server will stop
 providing services if only ((N-1)/2) nodes or less remain online.

If you understand the drawbacks and implications, you can decide yourself if
you want to use this technology in an odd numbered cluster setup.

5.10.3. QDevice-Net Setup

We recommend running any daemon which provides votes to corosync-qdevice as an
unprivileged user. Proxmox VE and Debian provide a package which is already
configured to do so.
The traffic between the daemon and the cluster must be encrypted to ensure a
safe and secure integration of the QDevice in Proxmox VE.
First, install the corosync-qnetd package on your external server
external# apt install corosync-qnetd
and the corosync-qdevice package on all cluster nodes
pve# apt install corosync-qdevice
After doing this, ensure that all the nodes in the cluster are online.
You can now set up your QDevice by running the following command on one
of the Proxmox VE nodes:
pve# pvecm qdevice setup <QDEVICE-IP>
The SSH key from the cluster will be automatically copied to the QDevice.
Note
Make sure to setup key-based access for the root user on your external
server, or temporarily allow root login with password during the setup phase.
If you receive an error such as Host key verification failed. at this
stage, running pvecm updatecerts could fix the issue.

After all the steps have successfully completed, you will see "Done". You can
verify that the QDevice has been set up with:
pve# pvecm status

...

Votequorum information
~~~~~~~~~~~~~~~~~~~~~
Expected votes:   3
Highest expected: 3
Total votes:      3
Quorum:           2
Flags:            Quorate Qdevice

Membership information
~~~~~~~~~~~~~~~~~~~~~~
 Nodeid Votes Qdevice Name
 0x00000001 1 A,V,NMW 192.168.22.180 (local)
 0x00000002 1 A,V,NMW 192.168.22.181
 0x00000000 1 Qdevice
QDevice Status Flags

The status output of the QDevice, as seen above, will usually contain three
columns:
	
A / NA: Alive or Not Alive. Indicates if the communication to the external
 corosync-qnetd daemon works.

	
V / NV: If the QDevice will cast a vote for the node. In a split-brain
 situation, where the corosync connection between the nodes is down, but they
 both can still communicate with the external corosync-qnetd daemon,
 only one node will get the vote.

	
MW / NMW: Master wins (MV) or not (NMW). Default is NMW, see
 [11].

	
NR: QDevice is not registered.

Note
If your QDevice is listed as Not Alive (NA in the output above),
ensure that port 5403 (the default port of the qnetd server) of your external
server is reachable via TCP/IP!

5.10.4. Frequently Asked Questions

Tie Breaking

In case of a tie, where two same-sized cluster partitions cannot see each other
but can see the QDevice, the QDevice chooses one of those partitions randomly
and provides a vote to it.

Possible Negative Implications

For clusters with an even node count, there are no negative implications when
using a QDevice. If it fails to work, it is the same as not having a QDevice
at all.

Adding/Deleting Nodes After QDevice Setup

If you want to add a new node or remove an existing one from a cluster with a
QDevice setup, you need to remove the QDevice first. After that, you can add or
remove nodes normally. Once you have a cluster with an even node count again,
you can set up the QDevice again as described previously.

Removing the QDevice

If you used the official pvecm tool to add the QDevice, you can remove it
by running:
pve# pvecm qdevice remove

[11] votequorum_qdevice_master_wins manual page
 https://manpages.debian.org/bookworm/libvotequorum-dev/votequorum_qdevice_master_wins.3.en.html

5.11. Corosync Configuration

The /etc/pve/corosync.conf file plays a central role in a Proxmox VE cluster. It
controls the cluster membership and its network.
For further information about it, check the corosync.conf man page:
man corosync.conf
For node membership, you should always use the pvecm tool provided by Proxmox VE.
You may have to edit the configuration file manually for other changes.
Here are a few best practice tips for doing this.
5.11.1. Edit corosync.conf

Editing the corosync.conf file is not always very straightforward. There are
two on each cluster node, one in /etc/pve/corosync.conf and the other in
/etc/corosync/corosync.conf. Editing the one in our cluster file system will
propagate the changes to the local one, but not vice versa.
The configuration will get updated automatically, as soon as the file changes.
This means that changes which can be integrated in a running corosync will take
effect immediately. Thus, you should always make a copy and edit that instead,
to avoid triggering unintended changes when saving the file while editing.
cp /etc/pve/corosync.conf /etc/pve/corosync.conf.new
Then, open the config file with your favorite editor, such as nano or
vim.tiny, which come pre-installed on every Proxmox VE node.
Note
Always increment the config_version number after configuration changes;
omitting this can lead to problems.

After making the necessary changes, create another copy of the current working
configuration file. This serves as a backup if the new configuration fails to
apply or causes other issues.
cp /etc/pve/corosync.conf /etc/pve/corosync.conf.bak
Then replace the old configuration file with the new one:
mv /etc/pve/corosync.conf.new /etc/pve/corosync.conf
You can check if the changes could be applied automatically, using the following
commands:
systemctl status corosync
journalctl -b -u corosync
If the changes could not be applied automatically, you may have to restart the
corosync service via:
systemctl restart corosync
On errors, check the troubleshooting section below.

5.11.2. Troubleshooting

Issue: quorum.expected_votes must be configured

When corosync starts to fail and you get the following message in the system log:
[...]
corosync[1647]: [QUORUM] Quorum provider: corosync_votequorum failed to initialize.
corosync[1647]: [SERV] Service engine 'corosync_quorum' failed to load for reason
 'configuration error: nodelist or quorum.expected_votes must be configured!'
[...]
It means that the hostname you set for a corosync ringX_addr in the
configuration could not be resolved.

Write Configuration When Not Quorate

If you need to change /etc/pve/corosync.conf on a node with no quorum, and you
understand what you are doing, use:
pvecm expected 1
This sets the expected vote count to 1 and makes the cluster quorate. You can
then fix your configuration, or revert it back to the last working backup.
This is not enough if corosync cannot start anymore. In that case, it is best to
edit the local copy of the corosync configuration in
/etc/corosync/corosync.conf, so that corosync can start again. Ensure that on
all nodes, this configuration has the same content to avoid split-brain
situations.

5.11.3. Corosync Configuration Glossary

	
ringX_addr

	
This names the different link addresses for the Kronosnet connections between
nodes.

5.12. Cluster Cold Start

It is obvious that a cluster is not quorate when all nodes are
offline. This is a common case after a power failure.
Note
It is always a good idea to use an uninterruptible power supply
(“UPS”, also called “battery backup”) to avoid this state, especially if
you want HA.

On node startup, the pve-guests service is started and waits for
quorum. Once quorate, it starts all guests which have the onboot
flag set.
When you turn on nodes, or when power comes back after power failure,
it is likely that some nodes will boot faster than others. Please keep in
mind that guest startup is delayed until you reach quorum.

5.13. Guest VMID Auto-Selection

When creating new guests the web interface will ask the backend for a free VMID
automatically. The default range for searching is 100 to 1000000 (lower
than the maximal allowed VMID enforced by the schema).
Sometimes admins either want to allocate new VMIDs in a separate range, for
example to easily separate temporary VMs with ones that choose a VMID manually.
Other times its just desired to provided a stable length VMID, for which
setting the lower boundary to, for example, 100000 gives much more room for.
To accommodate this use case one can set either lower, upper or both boundaries
via the datacenter.cfg configuration file, which can be edited in the web
interface under Datacenter → Options.
Note
The range is only used for the next-id API call, so it isn’t a hard
limit.

5.14. Guest Migration

Migrating virtual guests to other nodes is a useful feature in a
cluster. There are settings to control the behavior of such
migrations. This can be done via the configuration file
datacenter.cfg or for a specific migration via API or command-line
parameters.
It makes a difference if a guest is online or offline, or if it has
local resources (like a local disk).
For details about virtual machine migration, see the
QEMU/KVM Migration Chapter.
For details about container migration, see the
Container Migration Chapter.
5.14.1. Migration Type

The migration type defines if the migration data should be sent over an
encrypted (secure) channel or an unencrypted (insecure) one.
Setting the migration type to insecure means that the RAM content of a
virtual guest is also transferred unencrypted, which can lead to
information disclosure of critical data from inside the guest (for
example, passwords or encryption keys).
Therefore, we strongly recommend using the secure channel if you do
not have full control over the network and can not guarantee that no
one is eavesdropping on it.
Note
Storage migration does not follow this setting. Currently, it
always sends the storage content over a secure channel.

Encryption requires a lot of computing power, so this setting is often
changed to insecure to achieve better performance. The impact on
modern systems is lower because they implement AES encryption in
hardware. The performance impact is particularly evident in fast
networks, where you can transfer 10 Gbps or more.

5.14.2. Migration Network

By default, Proxmox VE uses the network in which cluster communication
takes place to send the migration traffic. This is not optimal both because
sensitive cluster traffic can be disrupted and this network may not
have the best bandwidth available on the node.
Setting the migration network parameter allows the use of a dedicated
network for all migration traffic. In addition to the memory,
this also affects the storage traffic for offline migrations.
The migration network is set as a network using CIDR notation. This
has the advantage that you don’t have to set individual IP addresses
for each node. Proxmox VE can determine the real address on the
destination node from the network specified in the CIDR form. To
enable this, the network must be specified so that each node has exactly one
IP in the respective network.
Example

We assume that we have a three-node setup, with three separate
networks. One for public communication with the Internet, one for
cluster communication, and a very fast one, which we want to use as a
dedicated network for migration.
A network configuration for such a setup might look as follows:
iface eno1 inet manual

public network
auto vmbr0
iface vmbr0 inet static
 address 192.X.Y.57/24
 gateway 192.X.Y.1
 bridge-ports eno1
 bridge-stp off
 bridge-fd 0

cluster network
auto eno2
iface eno2 inet static
 address 10.1.1.1/24

fast network
auto eno3
iface eno3 inet static
 address 10.1.2.1/24
Here, we will use the network 10.1.2.0/24 as a migration network. For
a single migration, you can do this using the migration_network
parameter of the command-line tool:
qm migrate 106 tre --online --migration_network 10.1.2.0/24
To configure this as the default network for all migrations in the
cluster, set the migration property of the /etc/pve/datacenter.cfg
file:
use dedicated migration network
migration: secure,network=10.1.2.0/24
Note
The migration type must always be set when the migration network
is set in /etc/pve/datacenter.cfg.

Chapter 6. Proxmox Cluster File System (pmxcfs)

The Proxmox Cluster file system (“pmxcfs”) is a database-driven file
system for storing configuration files, replicated in real time to all
cluster nodes using corosync. We use this to store all Proxmox VE related
configuration files.
Although the file system stores all data inside a persistent database on disk,
a copy of the data resides in RAM. This imposes restrictions on the maximum
size, which is currently 128 MiB. This is still enough to store the
configuration of several thousand virtual machines.
This system provides the following advantages:
	
Seamless replication of all configuration to all nodes in real time

	
Provides strong consistency checks to avoid duplicate VM IDs

	
Read-only when a node loses quorum

	
Automatic updates of the corosync cluster configuration to all nodes

	
Includes a distributed locking mechanism

6.1. POSIX Compatibility

The file system is based on FUSE, so the behavior is POSIX like. But
some feature are simply not implemented, because we do not need them:
	
You can just generate normal files and directories, but no symbolic
 links, …

	
You can’t rename non-empty directories (because this makes it easier
 to guarantee that VMIDs are unique).

	
You can’t change file permissions (permissions are based on paths)

	
O_EXCL creates were not atomic (like old NFS)

	
O_TRUNC creates are not atomic (FUSE restriction)

6.2. File Access Rights

All files and directories are owned by user root and have group
www-data. Only root has write permissions, but group www-data can
read most files. Files below the following paths are only accessible by root:
/etc/pve/priv/
/etc/pve/nodes/${NAME}/priv/

6.3. Technology

We use the Corosync Cluster Engine for
cluster communication, and SQlite for the
database file. The file system is implemented in user space using
FUSE.

6.4. File System Layout

The file system is mounted at:
/etc/pve
6.4.1. Files

	authkey.pub
	Public key used by the ticket system

	ceph.conf
	Ceph configuration file (note: /etc/ceph/ceph.conf is a symbolic link to this)

	corosync.conf
	Corosync cluster configuration file (prior to Proxmox VE 4.x, this file was called cluster.conf)

	datacenter.cfg
	Proxmox VE datacenter-wide configuration (keyboard layout, proxy, …)

	domains.cfg
	Proxmox VE authentication domains

	firewall/cluster.fw
	Firewall configuration applied to all nodes

	firewall/<NAME>.fw
	Firewall configuration for individual nodes

	firewall/<VMID>.fw
	Firewall configuration for VMs and containers

	ha/crm_commands
	Displays HA operations that are currently being carried out by the CRM

	ha/manager_status
	JSON-formatted information regarding HA services on the cluster

	ha/resources.cfg
	Resources managed by high availability, and their current state

	nodes/<NAME>/config
	Node-specific configuration

	nodes/<NAME>/lxc/<VMID>.conf
	VM configuration data for LXC containers

	nodes/<NAME>/openvz/
	Prior to Proxmox VE 4.0, used for container configuration data (deprecated, removed soon)

	nodes/<NAME>/pve-ssl.key
	Private SSL key for pve-ssl.pem

	nodes/<NAME>/pve-ssl.pem
	Public SSL certificate for web server (signed by cluster CA)

	nodes/<NAME>/pveproxy-ssl.key
	Private SSL key for pveproxy-ssl.pem (optional)

	nodes/<NAME>/pveproxy-ssl.pem
	Public SSL certificate (chain) for web server (optional override for pve-ssl.pem)

	nodes/<NAME>/qemu-server/<VMID>.conf
	VM configuration data for KVM VMs

	priv/authkey.key
	Private key used by ticket system

	priv/authorized_keys
	SSH keys of cluster members for authentication

	priv/ceph*
	Ceph authentication keys and associated capabilities

	priv/known_hosts
	SSH keys of the cluster members for verification

	priv/lock/*
	Lock files used by various services to ensure safe cluster-wide operations

	priv/pve-root-ca.key
	Private key of cluster CA

	priv/shadow.cfg
	Shadow password file for PVE Realm users

	priv/storage/<STORAGE-ID>.pw
	Contains the password of a storage in plain text

	priv/tfa.cfg
	Base64-encoded two-factor authentication configuration

	priv/token.cfg
	API token secrets of all tokens

	pve-root-ca.pem
	Public certificate of cluster CA

	pve-www.key
	Private key used for generating CSRF tokens

	sdn/*
	Shared configuration files for Software Defined Networking (SDN)

	status.cfg
	Proxmox VE external metrics server configuration

	storage.cfg
	Proxmox VE storage configuration

	user.cfg
	Proxmox VE access control configuration (users/groups/…)

	virtual-guest/cpu-models.conf
	For storing custom CPU models

	vzdump.cron
	Cluster-wide vzdump backup-job schedule

6.4.2. Symbolic links

Certain directories within the cluster file system use symbolic links, in order
to point to a node’s own configuration files. Thus, the files pointed to in the
table below refer to different files on each node of the cluster.
	local
	nodes/<LOCAL_HOST_NAME>

	lxc
	nodes/<LOCAL_HOST_NAME>/lxc/

	openvz
	nodes/<LOCAL_HOST_NAME>/openvz/ (deprecated, removed soon)

	qemu-server
	nodes/<LOCAL_HOST_NAME>/qemu-server/

6.4.3. Special status files for debugging (JSON)

	.version
	File versions (to detect file modifications)

	.members
	Info about cluster members

	.vmlist
	List of all VMs

	.clusterlog
	Cluster log (last 50 entries)

	.rrd
	RRD data (most recent entries)

6.4.4. Enable/Disable debugging

You can enable verbose syslog messages with:
echo "1" >/etc/pve/.debug
And disable verbose syslog messages with:
echo "0" >/etc/pve/.debug

6.5. Recovery

If you have major problems with your Proxmox VE host, for example hardware
issues, it could be helpful to copy the pmxcfs database file
/var/lib/pve-cluster/config.db, and move it to a new Proxmox VE
host. On the new host (with nothing running), you need to stop the
pve-cluster service and replace the config.db file (required permissions
0600). Following this, adapt /etc/hostname and /etc/hosts according to the
lost Proxmox VE host, then reboot and check (and don’t forget your
VM/CT data).
6.5.1. Remove Cluster Configuration

The recommended way is to reinstall the node after you remove it from
your cluster. This ensures that all secret cluster/ssh keys and any
shared configuration data is destroyed.
In some cases, you might prefer to put a node back to local mode without
reinstalling, which is described in
Separate A Node Without Reinstalling

6.5.2. Recovering/Moving Guests from Failed Nodes

For the guest configuration files in nodes/<NAME>/qemu-server/ (VMs) and
nodes/<NAME>/lxc/ (containers), Proxmox VE sees the containing node <NAME> as the
owner of the respective guest. This concept enables the usage of local locks
instead of expensive cluster-wide locks for preventing concurrent guest
configuration changes.
As a consequence, if the owning node of a guest fails (for example, due to a power
outage, fencing event, etc.), a regular migration is not possible (even if all
the disks are located on shared storage), because such a local lock on the
(offline) owning node is unobtainable. This is not a problem for HA-managed
guests, as Proxmox VE’s High Availability stack includes the necessary
(cluster-wide) locking and watchdog functionality to ensure correct and
automatic recovery of guests from fenced nodes.
If a non-HA-managed guest has only shared disks (and no other local resources
which are only available on the failed node), a manual recovery
is possible by simply moving the guest configuration file from the failed
node’s directory in /etc/pve/ to an online node’s directory (which changes the
logical owner or location of the guest).
For example, recovering the VM with ID 100 from an offline node1 to another
node node2 works by running the following command as root on any member node
of the cluster:
mv /etc/pve/nodes/node1/qemu-server/100.conf /etc/pve/nodes/node2/qemu-server/
Warning
Before manually recovering a guest like this, make absolutely sure
that the failed source node is really powered off/fenced. Otherwise Proxmox VE’s
locking principles are violated by the mv command, which can have unexpected
consequences.

Warning
Guests with local disks (or other local resources which are only
available on the offline node) are not recoverable like this. Either wait for the
failed node to rejoin the cluster or restore such guests from backups.

Chapter 7. Proxmox VE Storage

The Proxmox VE storage model is very flexible. Virtual machine images
can either be stored on one or several local storages, or on shared
storage like NFS or iSCSI (NAS, SAN). There are no limits, and you may
configure as many storage pools as you like. You can use all
storage technologies available for Debian Linux.
One major benefit of storing VMs on shared storage is the ability to
live-migrate running machines without any downtime, as all nodes in
the cluster have direct access to VM disk images. There is no need to
copy VM image data, so live migration is very fast in that case.
The storage library (package libpve-storage-perl) uses a flexible
plugin system to provide a common interface to all storage types. This
can be easily adopted to include further storage types in the future.

7.1. Storage Types

There are basically two different classes of storage types:
	
File level storage

	
File level based storage technologies allow access to a fully featured (POSIX)
file system. They are in general more flexible than any Block level storage
(see below), and allow you to store content of any type. ZFS is probably the
most advanced system, and it has full support for snapshots and clones.

	
Block level storage

	
Allows to store large raw images. It is usually not possible to store
other files (ISO, backups, ..) on such storage types. Most modern
block level storage implementations support snapshots and clones.
RADOS and GlusterFS are distributed systems, replicating storage
data to different nodes.

Table 7.1. Available storage types
	Description 	Plugin type 	Level 	Shared	Snapshots	Stable
	ZFS (local)
	zfspool
	both1
	no
	yes
	yes

	Directory
	dir
	file
	no
	no2
	yes

	BTRFS
	btrfs
	file
	no
	yes
	technology preview

	NFS
	nfs
	file
	yes
	no2
	yes

	CIFS
	cifs
	file
	yes
	no2
	yes

	Proxmox Backup
	pbs
	both
	yes
	n/a
	yes

	GlusterFS
	glusterfs
	file
	yes
	no2
	yes

	CephFS
	cephfs
	file
	yes
	yes
	yes

	LVM
	lvm
	block
	no3
	no
	yes

	LVM-thin
	lvmthin
	block
	no
	yes
	yes

	iSCSI/kernel
	iscsi
	block
	yes
	no
	yes

	iSCSI/libiscsi
	iscsidirect
	block
	yes
	no
	yes

	Ceph/RBD
	rbd
	block
	yes
	yes
	yes

	ZFS over iSCSI
	zfs
	block
	yes
	yes
	yes

1: Disk images for VMs are stored in ZFS volume (zvol) datasets, which provide
block device functionality.
2: On file based storages, snapshots are possible with the qcow2 format.
3: It is possible to use LVM on top of an iSCSI or FC-based storage.
That way you get a shared LVM storage
7.1.1. Thin Provisioning

A number of storages, and the QEMU image format qcow2, support thin
provisioning. With thin provisioning activated, only the blocks that
the guest system actually use will be written to the storage.
Say for instance you create a VM with a 32GB hard disk, and after
installing the guest system OS, the root file system of the VM contains
3 GB of data. In that case only 3GB are written to the storage, even
if the guest VM sees a 32GB hard drive. In this way thin provisioning
allows you to create disk images which are larger than the currently
available storage blocks. You can create large disk images for your
VMs, and when the need arises, add more disks to your storage without
resizing the VMs' file systems.
All storage types which have the “Snapshots” feature also support thin
provisioning.
Caution
If a storage runs full, all guests using volumes on that
storage receive IO errors. This can cause file system inconsistencies
and may corrupt your data. So it is advisable to avoid
over-provisioning of your storage resources, or carefully observe
free space to avoid such conditions.

7.2. Storage Configuration

All Proxmox VE related storage configuration is stored within a single text
file at /etc/pve/storage.cfg. As this file is within /etc/pve/, it
gets automatically distributed to all cluster nodes. So all nodes
share the same storage configuration.
Sharing storage configuration makes perfect sense for shared storage,
because the same “shared” storage is accessible from all nodes. But it is
also useful for local storage types. In this case such local storage
is available on all nodes, but it is physically different and can have
totally different content.
7.2.1. Storage Pools

Each storage pool has a <type>, and is uniquely identified by its
<STORAGE_ID>. A pool configuration looks like this:
<type>: <STORAGE_ID>
 <property> <value>
 <property> <value>
 <property>
 ...
The <type>: <STORAGE_ID> line starts the pool definition, which is then
followed by a list of properties. Most properties require a value. Some have
reasonable defaults, in which case you can omit the value.
To be more specific, take a look at the default storage configuration
after installation. It contains one special local storage pool named
local, which refers to the directory /var/lib/vz and is always
available. The Proxmox VE installer creates additional storage entries
depending on the storage type chosen at installation time.
Default storage configuration (/etc/pve/storage.cfg).

dir: local
 path /var/lib/vz
 content iso,vztmpl,backup

default image store on LVM based installation
lvmthin: local-lvm
 thinpool data
 vgname pve
 content rootdir,images

default image store on ZFS based installation
zfspool: local-zfs
 pool rpool/data
 sparse
 content images,rootdir

Caution
It is problematic to have multiple storage configurations pointing to
the exact same underlying storage. Such an aliased storage configuration can
lead to two different volume IDs (volid) pointing to the exact same disk
image. Proxmox VE expects that the images' volume IDs point to, are unique. Choosing
different content types for aliased storage configurations can be fine, but
is not recommended.

7.2.2. Common Storage Properties

A few storage properties are common among different storage types.
	
nodes

	
List of cluster node names where this storage is
usable/accessible. One can use this property to restrict storage
access to a limited set of nodes.

	
content

	
A storage can support several content types, for example virtual disk
images, cdrom iso images, container templates or container root
directories. Not all storage types support all content types. One can set
this property to select what this storage is used for.

	
images

	
QEMU/KVM VM images.

	
rootdir

	
Allow to store container data.

	
vztmpl

	
Container templates.

	
backup

	
Backup files (vzdump).

	
iso

	
ISO images

	
snippets

	
Snippet files, for example guest hook scripts

	
shared

	
Indicate that this is a single storage with the same contents on all nodes (or
all listed in the nodes option). It will not make the contents of a local
storage automatically accessible to other nodes, it just marks an already shared
storage as such!

	
disable

	
You can use this flag to disable the storage completely.

	
maxfiles

	
Deprecated, please use prune-backups instead. Maximum number of backup files
per VM. Use 0 for unlimited.

	
prune-backups

	
Retention options for backups. For details, see
Backup Retention.

	
format

	
Default image format (raw|qcow2|vmdk)

	
preallocation

	
Preallocation mode (off|metadata|falloc|full) for raw and qcow2 images on
file-based storages. The default is metadata, which is treated like off for
raw images. When using network storages in combination with large qcow2
images, using off can help to avoid timeouts.

Warning
It is not advisable to use the same storage pool on different
Proxmox VE clusters. Some storage operation need exclusive access to the
storage, so proper locking is required. While this is implemented
within a cluster, it does not work between different clusters.

7.3. Volumes

We use a special notation to address storage data. When you allocate
data from a storage pool, it returns such a volume identifier. A volume
is identified by the <STORAGE_ID>, followed by a storage type
dependent volume name, separated by colon. A valid <VOLUME_ID> looks
like:
local:230/example-image.raw
local:iso/debian-501-amd64-netinst.iso
local:vztmpl/debian-5.0-joomla_1.5.9-1_i386.tar.gz
iscsi-storage:0.0.2.scsi-14f504e46494c4500494b5042546d2d646744372d31616d61
To get the file system path for a <VOLUME_ID> use:
pvesm path <VOLUME_ID>
7.3.1. Volume Ownership

There exists an ownership relation for image type volumes. Each such
volume is owned by a VM or Container. For example volume
local:230/example-image.raw is owned by VM 230. Most storage
backends encodes this ownership information into the volume name.
When you remove a VM or Container, the system also removes all
associated volumes which are owned by that VM or Container.

7.4. Using the Command-line Interface

It is recommended to familiarize yourself with the concept behind storage
pools and volume identifiers, but in real life, you are not forced to do any
of those low level operations on the command line. Normally,
allocation and removal of volumes is done by the VM and Container
management tools.
Nevertheless, there is a command-line tool called pvesm (“Proxmox VE
Storage Manager”), which is able to perform common storage management
tasks.
7.4.1. Examples

Add storage pools
pvesm add <TYPE> <STORAGE_ID> <OPTIONS>
pvesm add dir <STORAGE_ID> --path <PATH>
pvesm add nfs <STORAGE_ID> --path <PATH> --server <SERVER> --export <EXPORT>
pvesm add lvm <STORAGE_ID> --vgname <VGNAME>
pvesm add iscsi <STORAGE_ID> --portal <HOST[:PORT]> --target <TARGET>
Disable storage pools
pvesm set <STORAGE_ID> --disable 1
Enable storage pools
pvesm set <STORAGE_ID> --disable 0
Change/set storage options
pvesm set <STORAGE_ID> <OPTIONS>
pvesm set <STORAGE_ID> --shared 1
pvesm set local --format qcow2
pvesm set <STORAGE_ID> --content iso
Remove storage pools. This does not delete any data, and does not
disconnect or unmount anything. It just removes the storage
configuration.
pvesm remove <STORAGE_ID>
Allocate volumes
pvesm alloc <STORAGE_ID> <VMID> <name> <size> [--format <raw|qcow2>]
Allocate a 4G volume in local storage. The name is auto-generated if
you pass an empty string as <name>
pvesm alloc local <VMID> '' 4G
Free volumes
pvesm free <VOLUME_ID>
Warning
This really destroys all volume data.

List storage status
pvesm status
List storage contents
pvesm list <STORAGE_ID> [--vmid <VMID>]
List volumes allocated by VMID
pvesm list <STORAGE_ID> --vmid <VMID>
List iso images
pvesm list <STORAGE_ID> --content iso
List container templates
pvesm list <STORAGE_ID> --content vztmpl
Show file system path for a volume
pvesm path <VOLUME_ID>
Exporting the volume local:103/vm-103-disk-0.qcow2 to the file target.
This is mostly used internally with pvesm import.
The stream format qcow2+size is different to the qcow2 format.
Consequently, the exported file cannot simply be attached to a VM.
This also holds for the other formats.
pvesm export local:103/vm-103-disk-0.qcow2 qcow2+size target --with-snapshots 1

7.5. Directory Backend

Storage pool type: dir
Proxmox VE can use local directories or locally mounted shares for
storage. A directory is a file level storage, so you can store any
content type like virtual disk images, containers, templates, ISO images
or backup files.
Note
You can mount additional storages via standard linux /etc/fstab,
and then define a directory storage for that mount point. This way you
can use any file system supported by Linux.

This backend assumes that the underlying directory is POSIX
compatible, but nothing else. This implies that you cannot create
snapshots at the storage level. But there exists a workaround for VM
images using the qcow2 file format, because that format supports
snapshots internally.
Tip
Some storage types do not support O_DIRECT, so you can’t use
cache mode none with such storages. Simply use cache mode
writeback instead.

We use a predefined directory layout to store different content types
into different sub-directories. This layout is used by all file level
storage backends.
Table 7.2. Directory layout
	Content type 	Subdir
	VM images
	images/<VMID>/

	ISO images
	template/iso/

	Container templates
	template/cache/

	Backup files
	dump/

	Snippets
	snippets/

7.5.1. Configuration

This backend supports all common storage properties, and adds two
additional properties. The path property is used to specify the
directory. This needs to be an absolute file system path.
The optional content-dirs property allows for the default layout
to be changed. It consists of a comma-separated list of identifiers
in the following format:
vtype=path
Where vtype is one of the allowed content types for the storage, and
path is a path relative to the mountpoint of the storage.
Configuration Example (/etc/pve/storage.cfg).

dir: backup
 path /mnt/backup
 content backup
 prune-backups keep-last=7
 max-protected-backups 3
 content-dirs backup=custom/backup/dir

The above configuration defines a storage pool called backup. That pool can be
used to store up to 7 regular backups (keep-last=7) and 3 protected backups
per VM. The real path for the backup files is /mnt/backup/custom/backup/dir/....

7.5.2. File naming conventions

This backend uses a well defined naming scheme for VM images:
vm-<VMID>-<NAME>.<FORMAT>
	
<VMID>

	
This specifies the owner VM.

	
<NAME>

	
This can be an arbitrary name (ascii) without white space. The
backend uses disk-[N] as default, where [N] is replaced by an
integer to make the name unique.

	
<FORMAT>

	
Specifies the image format (raw|qcow2|vmdk).

When you create a VM template, all VM images are renamed to indicate
that they are now read-only, and can be used as a base image for clones:
base-<VMID>-<NAME>.<FORMAT>
Note
Such base images are used to generate cloned images. So it is
important that those files are read-only, and never get modified. The
backend changes the access mode to 0444, and sets the immutable flag
(chattr +i) if the storage supports that.

7.5.3. Storage Features

As mentioned above, most file systems do not support snapshots out
of the box. To workaround that problem, this backend is able to use
qcow2 internal snapshot capabilities.
Same applies to clones. The backend uses the qcow2 base image
feature to create clones.
Table 7.3. Storage features for backend dir
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir vztmpl iso backup snippets
	raw qcow2 vmdk subvol
	no
	qcow2
	qcow2

7.5.4. Examples

Please use the following command to allocate a 4GB image on storage local:
pvesm alloc local 100 vm-100-disk10.raw 4G
Formatting '/var/lib/vz/images/100/vm-100-disk10.raw', fmt=raw size=4294967296
successfully created 'local:100/vm-100-disk10.raw'
Note
The image name must conform to above naming conventions.

The real file system path is shown with:
pvesm path local:100/vm-100-disk10.raw
/var/lib/vz/images/100/vm-100-disk10.raw
And you can remove the image with:
pvesm free local:100/vm-100-disk10.raw

7.6. NFS Backend

Storage pool type: nfs
The NFS backend is based on the directory backend, so it shares most
properties. The directory layout and the file naming conventions are
the same. The main advantage is that you can directly configure the
NFS server properties, so the backend can mount the share
automatically. There is no need to modify /etc/fstab. The backend
can also test if the server is online, and provides a method to query
the server for exported shares.
7.6.1. Configuration

The backend supports all common storage properties, except the shared
flag, which is always set. Additionally, the following properties are
used to configure the NFS server:
	
server

	
Server IP or DNS name. To avoid DNS lookup delays, it is usually
preferable to use an IP address instead of a DNS name - unless you
have a very reliable DNS server, or list the server in the local
/etc/hosts file.

	
export

	
NFS export path (as listed by pvesm nfsscan).

You can also set NFS mount options:
	
path

	
The local mount point (defaults to /mnt/pve/<STORAGE_ID>/).

	
content-dirs

	
Overrides for the default directory layout. Optional.

	
options

	
NFS mount options (see man nfs).

Configuration Example (/etc/pve/storage.cfg).

nfs: iso-templates
 path /mnt/pve/iso-templates
 server 10.0.0.10
 export /space/iso-templates
 options vers=3,soft
 content iso,vztmpl

Tip
After an NFS request times out, NFS request are retried
indefinitely by default. This can lead to unexpected hangs on the
client side. For read-only content, it is worth to consider the NFS
soft option, which limits the number of retries to three.

7.6.2. Storage Features

NFS does not support snapshots, but the backend uses qcow2 features
to implement snapshots and cloning.
Table 7.4. Storage features for backend nfs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir vztmpl iso backup snippets
	raw qcow2 vmdk
	yes
	qcow2
	qcow2

7.6.3. Examples

You can get a list of exported NFS shares with:
pvesm nfsscan <server>

7.7. CIFS Backend

Storage pool type: cifs
The CIFS backend extends the directory backend, so that no manual
setup of a CIFS mount is needed. Such a storage can be added directly
through the Proxmox VE API or the web UI, with all our backend advantages,
like server heartbeat check or comfortable selection of exported
shares.
7.7.1. Configuration

The backend supports all common storage properties, except the shared
flag, which is always set. Additionally, the following CIFS special
properties are available:
	
server

	
Server IP or DNS name. Required.

Tip
To avoid DNS lookup delays, it is usually preferable to use an IP
address instead of a DNS name - unless you have a very reliable DNS
server, or list the server in the local /etc/hosts file.

	
share

	
CIFS share to use (get available ones with pvesm scan cifs <address> or the
web UI). Required.

	
username

	
The username for the CIFS storage. Optional, defaults to ‘guest’.

	
password

	
The user password. Optional.
It will be saved in a file only readable by root
(/etc/pve/priv/storage/<STORAGE-ID>.pw).

	
domain

	
Sets the user domain (workgroup) for this storage. Optional.

	
smbversion

	
SMB protocol Version. Optional, default is 3.
SMB1 is not supported due to security issues.

	
path

	
The local mount point. Optional, defaults to /mnt/pve/<STORAGE_ID>/.

	
content-dirs

	
Overrides for the default directory layout. Optional.

	
options

	
Additional CIFS mount options (see man mount.cifs). Some options are set
automatically and shouldn’t be set here. Proxmox VE will always set the option
soft. Depending on the configuration, these options are set automatically:
username, credentials, guest, domain, vers.

	
subdir

	
The subdirectory of the share to mount. Optional, defaults to the root directory
of the share.

Configuration Example (/etc/pve/storage.cfg).

cifs: backup
 path /mnt/pve/backup
 server 10.0.0.11
 share VMData
 content backup
 options noserverino,echo_interval=30
 username anna
 smbversion 3
 subdir /data

7.7.2. Storage Features

CIFS does not support snapshots on a storage level. But you may use
qcow2 backing files if you still want to have snapshots and cloning
features available.
Table 7.5. Storage features for backend cifs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir vztmpl iso backup snippets
	raw qcow2 vmdk
	yes
	qcow2
	qcow2

7.7.3. Examples

You can get a list of exported CIFS shares with:
pvesm scan cifs <server> [--username <username>] [--password]
Then you could add this share as a storage to the whole Proxmox VE cluster
with:
pvesm add cifs <storagename> --server <server> --share <share> [--username <username>] [--password]

7.8. Proxmox Backup Server

Storage pool type: pbs
This backend allows direct integration of a Proxmox Backup Server into Proxmox VE
like any other storage.
A Proxmox Backup storage can be added directly through the Proxmox VE API, CLI or
the web interface.
7.8.1. Configuration

The backend supports all common storage properties, except the shared flag,
which is always set. Additionally, the following special properties to Proxmox
Backup Server are available:
	
server

	
Server IP or DNS name. Required.

	
username

	
The username for the Proxmox Backup Server storage. Required.

Tip
Do not forget to add the realm to the username. For example, root@pam or
archiver@pbs.

	
password

	
The user password. The value will be saved in a file under
/etc/pve/priv/storage/<STORAGE-ID>.pw with access restricted to the root
user. Required.

	
datastore

	
The ID of the Proxmox Backup Server datastore to use. Required.

	
fingerprint

	
The fingerprint of the Proxmox Backup Server API TLS certificate. You can get
it in the Servers Dashboard or using the proxmox-backup-manager cert info
command. Required for self-signed certificates or any other one where the host
does not trusts the servers CA.

	
encryption-key

	
A key to encrypt the backup data from the client side. Currently only
non-password protected (no key derive function (kdf)) are supported. Will be
saved in a file under /etc/pve/priv/storage/<STORAGE-ID>.enc with access
restricted to the root user. Use the magic value autogen to automatically
generate a new one using proxmox-backup-client key create --kdf none <path>.
Optional.

	
master-pubkey

	
A public RSA key used to encrypt the backup encryption key as part of the
backup task. The encrypted copy will be appended to the backup and stored on
the Proxmox Backup Server instance for recovery purposes.
Optional, requires encryption-key.

Configuration Example (/etc/pve/storage.cfg).

pbs: backup
 datastore main
 server enya.proxmox.com
 content backup
 fingerprint 09:54:ef:..snip..:88:af:47:fe:4c:3b:cf:8b:26:88:0b:4e:3c:b2
 prune-backups keep-all=1
 username archiver@pbs

7.8.2. Storage Features

Proxmox Backup Server only supports backups, they can be block-level or
file-level based. Proxmox VE uses block-level for virtual machines and file-level for
container.
Table 7.6. Storage features for backend pbs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	backup
	n/a
	yes
	n/a
	n/a

7.8.3. Encryption

[image: screenshot/storage-pbs-encryption-with-key.png]
Optionally, you can configure client-side encryption with AES-256 in GCM mode.
Encryption can be configured either via the web interface, or on the CLI with
the encryption-key option (see above). The key will be saved in the file
/etc/pve/priv/storage/<STORAGE-ID>.enc, which is only accessible by the root
user.
Warning
Without their key, backups will be inaccessible. Thus, you should
keep keys ordered and in a place that is separate from the contents being
backed up. It can happen, for example, that you back up an entire system, using
a key on that system. If the system then becomes inaccessible for any reason
and needs to be restored, this will not be possible as the encryption key will be
lost along with the broken system.

It is recommended that you keep your key safe, but easily accessible, in
order for quick disaster recovery. For this reason, the best place to store it
is in your password manager, where it is immediately recoverable. As a backup to
this, you should also save the key to a USB flash drive and store that in a secure
place. This way, it is detached from any system, but is still easy to recover
from, in case of emergency. Finally, in preparation for the worst case scenario,
you should also consider keeping a paper copy of your key locked away in a safe
place. The paperkey subcommand can be used to create a QR encoded version of
your key. The following command sends the output of the paperkey command to
a text file, for easy printing.
proxmox-backup-client key paperkey /etc/pve/priv/storage/<STORAGE-ID>.enc --output-format text > qrkey.txt
Additionally, it is possible to use a single RSA master key pair for key
recovery purposes: configure all clients doing encrypted backups to use a
single public master key, and all subsequent encrypted backups will contain a
RSA-encrypted copy of the used AES encryption key. The corresponding private
master key allows recovering the AES key and decrypting the backup even if the
client system is no longer available.
Warning
The same safe-keeping rules apply to the master key pair as to the
regular encryption keys. Without a copy of the private key recovery is not
possible! The paperkey command supports generating paper copies of private
master keys for storage in a safe, physical location.

Because the encryption is managed on the client side, you can use the same
datastore on the server for unencrypted backups and encrypted backups, even
if they are encrypted with different keys. However, deduplication between
backups with different keys is not possible, so it is often better to create
separate datastores.
Note
Do not use encryption if there is no benefit from it, for example, when
you are running the server locally in a trusted network. It is always easier to
recover from unencrypted backups.

7.8.4. Example: Add Storage over CLI

Then you could add this share as a storage to the whole Proxmox VE cluster
with:
pvesm add pbs <id> --server <server> --datastore <datastore> --username <username> --fingerprint 00:B4:... --password

7.9. GlusterFS Backend

Storage pool type: glusterfs
GlusterFS is a scalable network file system. The system uses a modular
design, runs on commodity hardware, and can provide a highly available
enterprise storage at low costs. Such system is capable of scaling to
several petabytes, and can handle thousands of clients.
Note
After a node/brick crash, GlusterFS does a full rsync to make
sure data is consistent. This can take a very long time with large
files, so this backend is not suitable to store large VM images.

7.9.1. Configuration

The backend supports all common storage properties, and adds the
following GlusterFS specific options:
	
server

	
GlusterFS volfile server IP or DNS name.

	
server2

	
Backup volfile server IP or DNS name.

	
volume

	
GlusterFS Volume.

	
transport

	
GlusterFS transport: tcp, unix or rdma

Configuration Example (/etc/pve/storage.cfg).

glusterfs: Gluster
 server 10.2.3.4
 server2 10.2.3.5
 volume glustervol
 content images,iso

7.9.2. File naming conventions

The directory layout and the file naming conventions are inherited
from the dir backend.

7.9.3. Storage Features

The storage provides a file level interface, but no native
snapshot/clone implementation.
Table 7.7. Storage features for backend glusterfs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images vztmpl iso backup snippets
	raw qcow2 vmdk
	yes
	qcow2
	qcow2

7.10. Local ZFS Pool Backend

Storage pool type: zfspool
This backend allows you to access local ZFS pools (or ZFS file systems
inside such pools).
7.10.1. Configuration

The backend supports the common storage properties content, nodes,
disable, and the following ZFS specific properties:
	
pool

	
Select the ZFS pool/filesystem. All allocations are done within that
pool.

	
blocksize

	
Set ZFS blocksize parameter.

	
sparse

	
Use ZFS thin-provisioning. A sparse volume is a volume whose
reservation is not equal to the volume size.

	
mountpoint

	
The mount point of the ZFS pool/filesystem. Changing this does not
affect the mountpoint property of the dataset seen by zfs.
Defaults to /<pool>.

Configuration Example (/etc/pve/storage.cfg).

zfspool: vmdata
 pool tank/vmdata
 content rootdir,images
 sparse

7.10.2. File naming conventions

The backend uses the following naming scheme for VM images:
vm-<VMID>-<NAME> // normal VM images
base-<VMID>-<NAME> // template VM image (read-only)
subvol-<VMID>-<NAME> // subvolumes (ZFS filesystem for containers)
	
<VMID>

	
This specifies the owner VM.

	
<NAME>

	
This can be an arbitrary name (ascii) without white space. The
backend uses disk[N] as default, where [N] is replaced by an
integer to make the name unique.

7.10.3. Storage Features

ZFS is probably the most advanced storage type regarding snapshot and
cloning. The backend uses ZFS datasets for both VM images (format
raw) and container data (format subvol). ZFS properties are
inherited from the parent dataset, so you can simply set defaults
on the parent dataset.
Table 7.8. Storage features for backend zfs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir
	raw subvol
	no
	yes
	yes

7.10.4. Examples

It is recommended to create an extra ZFS file system to store your VM images:
zfs create tank/vmdata
To enable compression on that newly allocated file system:
zfs set compression=on tank/vmdata
You can get a list of available ZFS filesystems with:
pvesm zfsscan

7.11. LVM Backend

Storage pool type: lvm
LVM is a light software layer on top of hard disks and partitions. It
can be used to split available disk space into smaller logical
volumes. LVM is widely used on Linux and makes managing hard drives
easier.
Another use case is to put LVM on top of a big iSCSI LUN. That way you
can easily manage space on that iSCSI LUN, which would not be possible
otherwise, because the iSCSI specification does not define a
management interface for space allocation.
7.11.1. Configuration

The LVM backend supports the common storage properties content, nodes,
disable, and the following LVM specific properties:
	
vgname

	
LVM volume group name. This must point to an existing volume group.

	
base

	
Base volume. This volume is automatically activated before accessing
the storage. This is mostly useful when the LVM volume group resides
on a remote iSCSI server.

	
saferemove

	
Called "Wipe Removed Volumes" in the web UI. Zero-out data when removing LVs.
When removing a volume, this makes sure that all data gets erased and cannot be
accessed by other LVs created later (which happen to be assigned the same
physical extents). This is a costly operation, but may be required as a security
measure in certain environments.

	
saferemove_throughput

	
Wipe throughput (cstream -t parameter value).

Configuration Example (/etc/pve/storage.cfg).

lvm: myspace
 vgname myspace
 content rootdir,images

7.11.2. File naming conventions

The backend use basically the same naming conventions as the ZFS pool
backend.
vm-<VMID>-<NAME> // normal VM images

7.11.3. Storage Features

LVM is a typical block storage, but this backend does not support
snapshots and clones. Unfortunately, normal LVM snapshots are quite
inefficient, because they interfere with all writes on the entire volume
group during snapshot time.
One big advantage is that you can use it on top of a shared storage,
for example, an iSCSI LUN. The backend itself implements proper cluster-wide
locking.
Tip
The newer LVM-thin backend allows snapshots and clones, but does
not support shared storage.

Table 7.9. Storage features for backend lvm
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir
	raw
	possible
	no
	no

7.11.4. Examples

List available volume groups:
pvesm lvmscan

7.12. LVM thin Backend

Storage pool type: lvmthin
LVM normally allocates blocks when you create a volume. LVM thin pools
instead allocates blocks when they are written. This behaviour is
called thin-provisioning, because volumes can be much larger than
physically available space.
You can use the normal LVM command-line tools to manage and create LVM
thin pools (see man lvmthin for details). Assuming you already have
a LVM volume group called pve, the following commands create a new
LVM thin pool (size 100G) called data:
lvcreate -L 100G -n data pve
lvconvert --type thin-pool pve/data
7.12.1. Configuration

The LVM thin backend supports the common storage properties content, nodes,
disable, and the following LVM specific properties:
	
vgname

	
LVM volume group name. This must point to an existing volume group.

	
thinpool

	
The name of the LVM thin pool.

Configuration Example (/etc/pve/storage.cfg).

lvmthin: local-lvm
 thinpool data
 vgname pve
 content rootdir,images

7.12.2. File naming conventions

The backend use basically the same naming conventions as the ZFS pool
backend.
vm-<VMID>-<NAME> // normal VM images

7.12.3. Storage Features

LVM thin is a block storage, but fully supports snapshots and clones
efficiently. New volumes are automatically initialized with zero.
It must be mentioned that LVM thin pools cannot be shared across
multiple nodes, so you can only use them as local storage.
Table 7.10. Storage features for backend lvmthin
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir
	raw
	no
	yes
	yes

7.12.4. Examples

List available LVM thin pools on volume group pve:
pvesm lvmthinscan pve

7.13. Open-iSCSI initiator

Storage pool type: iscsi
iSCSI is a widely employed technology used to connect to storage
servers. Almost all storage vendors support iSCSI. There are also open
source iSCSI target solutions available,
e.g. OpenMediaVault, which is based on
Debian.
To use this backend, you need to install the
Open-iSCSI (open-iscsi) package. This is a
standard Debian package, but it is not installed by default to save
resources.
apt-get install open-iscsi
Low-level iscsi management task can be done using the iscsiadm tool.
7.13.1. Configuration

The backend supports the common storage properties content, nodes,
disable, and the following iSCSI specific properties:
	
portal

	
iSCSI portal (IP or DNS name with optional port).

	
target

	
iSCSI target.

Configuration Example (/etc/pve/storage.cfg).

iscsi: mynas
 portal 10.10.10.1
 target iqn.2006-01.openfiler.com:tsn.dcb5aaaddd
 content none

Tip
If you want to use LVM on top of iSCSI, it make sense to set
content none. That way it is not possible to create VMs using iSCSI
LUNs directly.

7.13.2. File naming conventions

The iSCSI protocol does not define an interface to allocate or delete
data. Instead, that needs to be done on the target side and is vendor
specific. The target simply exports them as numbered LUNs. So Proxmox VE
iSCSI volume names just encodes some information about the LUN as seen
by the linux kernel.

7.13.3. Storage Features

iSCSI is a block level type storage, and provides no management
interface. So it is usually best to export one big LUN, and setup LVM
on top of that LUN. You can then use the LVM plugin to manage the
storage on that iSCSI LUN.
Table 7.11. Storage features for backend iscsi
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images none
	raw
	yes
	no
	no

7.13.4. Examples

Scan a remote iSCSI portal, and returns a list of possible targets:
pvesm scan iscsi <HOST[:PORT]>

7.14. User Mode iSCSI Backend

Storage pool type: iscsidirect
This backend provides basically the same functionality as the Open-iSCSI backed,
but uses a user-level library to implement it. You need to install the
libiscsi-bin package in order to use this backend.
It should be noted that there are no kernel drivers involved, so this
can be viewed as performance optimization. But this comes with the
drawback that you cannot use LVM on top of such iSCSI LUN. So you need
to manage all space allocations at the storage server side.
7.14.1. Configuration

The user mode iSCSI backend uses the same configuration options as the
Open-iSCSI backed.
Configuration Example (/etc/pve/storage.cfg).

iscsidirect: faststore
 portal 10.10.10.1
 target iqn.2006-01.openfiler.com:tsn.dcb5aaaddd

7.14.2. Storage Features

Note
This backend works with VMs only. Containers cannot use this
driver.

Table 7.12. Storage features for backend iscsidirect
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images
	raw
	yes
	no
	no

7.15. Ceph RADOS Block Devices (RBD)

Storage pool type: rbd
Ceph is a distributed object store and file system
designed to provide excellent performance, reliability and
scalability. RADOS block devices implement a feature rich block level
storage, and you get the following advantages:
	
thin provisioning

	
resizable volumes

	
distributed and redundant (striped over multiple OSDs)

	
full snapshot and clone capabilities

	
self healing

	
no single point of failure

	
scalable to the exabyte level

	
kernel and user space implementation available

Note
For smaller deployments, it is also possible to run Ceph
services directly on your Proxmox VE nodes. Recent hardware has plenty
of CPU power and RAM, so running storage services and VMs on same node
is possible.

7.15.1. Configuration

This backend supports the common storage properties nodes,
disable, content, and the following rbd specific properties:
	
monhost

	
List of monitor daemon IPs. Optional, only needed if Ceph is not running on the
Proxmox VE cluster.

	
pool

	
Ceph pool name.

	
username

	
RBD user ID. Optional, only needed if Ceph is not running on the Proxmox VE cluster.
Note that only the user ID should be used. The "client." type prefix must be
left out.

	
krbd

	
Enforce access to rados block devices through the krbd kernel module. Optional.

Note
Containers will use krbd independent of the option value.

Configuration Example for a external Ceph cluster (/etc/pve/storage.cfg).

rbd: ceph-external
 monhost 10.1.1.20 10.1.1.21 10.1.1.22
 pool ceph-external
 content images
 username admin

Tip
You can use the rbd utility to do low-level management tasks.

7.15.2. Authentication

Note
If Ceph is installed locally on the Proxmox VE cluster, the following is done
automatically when adding the storage.

If you use cephx authentication, which is enabled by default, you need to
provide the keyring from the external Ceph cluster.
To configure the storage via the CLI, you first need to make the file
containing the keyring available. One way is to copy the file from the external
Ceph cluster directly to one of the Proxmox VE nodes. The following example will
copy it to the /root directory of the node on which we run it:
scp <external cephserver>:/etc/ceph/ceph.client.admin.keyring /root/rbd.keyring
Then use the pvesm CLI tool to configure the external RBD storage, use the
--keyring parameter, which needs to be a path to the keyring file that you
copied. For example:
pvesm add rbd <name> --monhost "10.1.1.20 10.1.1.21 10.1.1.22" --content images --keyring /root/rbd.keyring
When configuring an external RBD storage via the GUI, you can copy and paste
the keyring into the appropriate field.
The keyring will be stored at
/etc/pve/priv/ceph/<STORAGE_ID>.keyring
Tip
Creating a keyring with only the needed capabilities is recommend when
connecting to an external cluster. For further information on Ceph user
management, see the Ceph docs.[12]

7.15.3. Ceph client configuration (optional)

Connecting to an external Ceph storage doesn’t always allow setting
client-specific options in the config DB on the external cluster. You can add a
ceph.conf beside the Ceph keyring to change the Ceph client configuration for
the storage.
The ceph.conf needs to have the same name as the storage.
/etc/pve/priv/ceph/<STORAGE_ID>.conf
See the RBD configuration reference [13] for possible settings.
Note
Do not change these settings lightly. Proxmox VE is merging the
<STORAGE_ID>.conf with the storage configuration.

7.15.4. Storage Features

The rbd backend is a block level storage, and implements full
snapshot and clone functionality.
Table 7.13. Storage features for backend rbd
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images rootdir
	raw
	yes
	yes
	yes

[12] Ceph User Management

[13] RBD configuration reference
https://docs.ceph.com/en/quincy/rbd/rbd-config-ref/

7.16. Ceph Filesystem (CephFS)

Storage pool type: cephfs
CephFS implements a POSIX-compliant filesystem, using a Ceph
storage cluster to store its data. As CephFS builds upon Ceph, it shares most of
its properties. This includes redundancy, scalability, self-healing, and high
availability.
Tip
Proxmox VE can manage Ceph setups, which makes
configuring a CephFS storage easier. As modern hardware offers a lot of
processing power and RAM, running storage services and VMs on same node is
possible without a significant performance impact.

To use the CephFS storage plugin, you must replace the stock Debian Ceph client,
by adding our Ceph repository.
Once added, run apt update, followed by apt dist-upgrade, in order to get
the newest packages.
Warning
Please ensure that there are no other Ceph repositories configured.
Otherwise the installation will fail or there will be mixed package versions on
the node, leading to unexpected behavior.

7.16.1. Configuration

This backend supports the common storage properties nodes,
disable, content, as well as the following cephfs specific properties:
	
fs-name

	
Name of the Ceph FS.

	
monhost

	
List of monitor daemon addresses. Optional, only needed if Ceph is not running
on the Proxmox VE cluster.

	
path

	
The local mount point. Optional, defaults to /mnt/pve/<STORAGE_ID>/.

	
username

	
Ceph user id. Optional, only needed if Ceph is not running on the Proxmox VE cluster,
where it defaults to admin.

	
subdir

	
CephFS subdirectory to mount. Optional, defaults to /.

	
fuse

	
Access CephFS through FUSE, instead of the kernel client. Optional, defaults
to 0.

Configuration example for an external Ceph cluster (/etc/pve/storage.cfg).

cephfs: cephfs-external
 monhost 10.1.1.20 10.1.1.21 10.1.1.22
 path /mnt/pve/cephfs-external
 content backup
 username admin
 fs-name cephfs

Note
Don’t forget to set up the client’s secret key file, if cephx was not
disabled.

7.16.2. Authentication

Note
If Ceph is installed locally on the Proxmox VE cluster, the following is done
automatically when adding the storage.

If you use cephx authentication, which is enabled by default, you need to
provide the secret from the external Ceph cluster.
To configure the storage via the CLI, you first need to make the file
containing the secret available. One way is to copy the file from the external
Ceph cluster directly to one of the Proxmox VE nodes. The following example will
copy it to the /root directory of the node on which we run it:
scp <external cephserver>:/etc/ceph/cephfs.secret /root/cephfs.secret
Then use the pvesm CLI tool to configure the external RBD storage, use the
--keyring parameter, which needs to be a path to the secret file that you
copied. For example:
pvesm add cephfs <name> --monhost "10.1.1.20 10.1.1.21 10.1.1.22" --content backup --keyring /root/cephfs.secret
When configuring an external RBD storage via the GUI, you can copy and paste
the secret into the appropriate field.
The secret is only the key itself, as opposed to the rbd backend which also
contains a [client.userid] section.
The secret will be stored at
/etc/pve/priv/ceph/<STORAGE_ID>.secret
A secret can be received from the Ceph cluster (as Ceph admin) by issuing the
command below, where userid is the client ID that has been configured to
access the cluster. For further information on Ceph user management, see the
Ceph docs.[12]
ceph auth get-key client.userid > cephfs.secret

7.16.3. Storage Features

The cephfs backend is a POSIX-compliant filesystem, on top of a Ceph cluster.
Table 7.14. Storage features for backend cephfs
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	vztmpl iso backup snippets
	none
	yes
	yes[1]
	no

[1] While no known bugs exist, snapshots are not yet guaranteed to be stable,
as they lack sufficient testing.

7.17. BTRFS Backend

Storage pool type: btrfs
On the surface, this storage type is very similar to the directory storage type,
so see the directory backend section for a general overview.
The main difference is that with this storage type raw formatted disks will be
placed in a subvolume, in order to allow taking snapshots and supporting offline
storage migration with snapshots being preserved.
Note
BTRFS will honor the O_DIRECT flag when opening files, meaning VMs
should not use cache mode none, otherwise there will be checksum errors.

7.17.1. Configuration

This backend is configured similarly to the directory storage. Note that when
adding a directory as a BTRFS storage, which is not itself also the mount point,
it is highly recommended to specify the actual mount point via the
is_mountpoint option.
For example, if a BTRFS file system is mounted at /mnt/data2 and its
pve-storage/ subdirectory (which may be a snapshot, which is recommended)
should be added as a storage pool called data2, you can use the following
entry:
btrfs: data2
 path /mnt/data2/pve-storage
 content rootdir,images
 is_mountpoint /mnt/data2

7.17.2. Snapshots

When taking a snapshot of a subvolume or raw file, the snapshot will be
created as a read-only subvolume with the same path followed by an @ and the
snapshot’s name.

7.18. ZFS over ISCSI Backend

Storage pool type: zfs
This backend accesses a remote machine having a ZFS pool as storage and an iSCSI
target implementation via ssh. For each guest disk it creates a ZVOL and,
exports it as iSCSI LUN. This LUN is used by Proxmox VE for the guest disk.
The following iSCSI target implementations are supported:
	
LIO (Linux)

	
IET (Linux)

	
ISTGT (FreeBSD)

	
Comstar (Solaris)

Note
This plugin needs a ZFS capable remote storage appliance, you cannot use
it to create a ZFS Pool on a regular Storage Appliance/SAN

7.18.1. Configuration

In order to use the ZFS over iSCSI plugin you need to configure the remote
machine (target) to accept ssh connections from the Proxmox VE node. Proxmox VE connects to the target for creating the ZVOLs and exporting them via iSCSI.
Authentication is done through a ssh-key (without password protection) stored in
/etc/pve/priv/zfs/<target_ip>_id_rsa
The following steps create a ssh-key and distribute it to the storage machine
with IP 192.0.2.1:
mkdir /etc/pve/priv/zfs
ssh-keygen -f /etc/pve/priv/zfs/192.0.2.1_id_rsa
ssh-copy-id -i /etc/pve/priv/zfs/192.0.2.1_id_rsa.pub root@192.0.2.1
ssh -i /etc/pve/priv/zfs/192.0.2.1_id_rsa root@192.0.2.1
The backend supports the common storage properties content, nodes,
disable, and the following ZFS over ISCSI specific properties:
	
pool

	
The ZFS pool/filesystem on the iSCSI target. All allocations are done within that
pool.

	
portal

	
iSCSI portal (IP or DNS name with optional port).

	
target

	
iSCSI target.

	
iscsiprovider

	
The iSCSI target implementation used on the remote machine

	
comstar_tg

	
target group for comstar views.

	
comstar_hg

	
host group for comstar views.

	
lio_tpg

	
target portal group for Linux LIO targets

	
nowritecache

	
disable write caching on the target

	
blocksize

	
Set ZFS blocksize parameter.

	
sparse

	
Use ZFS thin-provisioning. A sparse volume is a volume whose
reservation is not equal to the volume size.

Configuration Examples (/etc/pve/storage.cfg).

zfs: lio
 blocksize 4k
 iscsiprovider LIO
 pool tank
 portal 192.0.2.111
 target iqn.2003-01.org.linux-iscsi.lio.x8664:sn.xxxxxxxxxxxx
 content images
 lio_tpg tpg1
 sparse 1

zfs: solaris
 blocksize 4k
 target iqn.2010-08.org.illumos:02:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx:tank1
 pool tank
 iscsiprovider comstar
 portal 192.0.2.112
 content images

zfs: freebsd
 blocksize 4k
 target iqn.2007-09.jp.ne.peach.istgt:tank1
 pool tank
 iscsiprovider istgt
 portal 192.0.2.113
 content images

zfs: iet
 blocksize 4k
 target iqn.2001-04.com.example:tank1
 pool tank
 iscsiprovider iet
 portal 192.0.2.114
 content images

7.18.2. Storage Features

The ZFS over iSCSI plugin provides a shared storage, which is capable of
snapshots. You need to make sure that the ZFS appliance does not become a single
point of failure in your deployment.
Table 7.15. Storage features for backend iscsi
	Content types 	Image formats 	Shared 	Snapshots 	Clones
	images
	raw
	yes
	yes
	no

Chapter 8. Deploy Hyper-Converged Ceph Cluster

8.1. Introduction

[image: screenshot/gui-ceph-status-dashboard.png]
Proxmox VE unifies your compute and storage systems, that is, you can use the same
physical nodes within a cluster for both computing (processing VMs and
containers) and replicated storage. The traditional silos of compute and
storage resources can be wrapped up into a single hyper-converged appliance.
Separate storage networks (SANs) and connections via network attached storage
(NAS) disappear. With the integration of Ceph, an open source software-defined
storage platform, Proxmox VE has the ability to run and manage Ceph storage directly
on the hypervisor nodes.
Ceph is a distributed object store and file system designed to provide
excellent performance, reliability and scalability.
Some advantages of Ceph on Proxmox VE are:
	
Easy setup and management via CLI and GUI

	
Thin provisioning

	
Snapshot support

	
Self healing

	
Scalable to the exabyte level

	
Provides block, file system, and object storage

	
Setup pools with different performance and redundancy characteristics

	
Data is replicated, making it fault tolerant

	
Runs on commodity hardware

	
No need for hardware RAID controllers

	
Open source

For small to medium-sized deployments, it is possible to install a Ceph server
for using RADOS Block Devices (RBD) or CephFS directly on your Proxmox VE cluster
nodes (see Ceph RADOS Block Devices (RBD)).
Recent hardware has a lot of CPU power and RAM, so running storage services and
virtual guests on the same node is possible.
To simplify management, Proxmox VE provides you native integration to install and
manage Ceph services on Proxmox VE nodes either via the built-in web interface, or
using the pveceph command line tool.

8.2. Terminology

Ceph consists of multiple Daemons, for use as an RBD storage:
	
Ceph Monitor (ceph-mon, or MON)

	
Ceph Manager (ceph-mgr, or MGS)

	
Ceph Metadata Service (ceph-mds, or MDS)

	
Ceph Object Storage Daemon (ceph-osd, or OSD)

Tip
We highly recommend to get familiar with Ceph
[14],
its architecture
[15]
and vocabulary
[16].

[14] Ceph intro https://docs.ceph.com/en/quincy/start/intro/

[15] Ceph architecture https://docs.ceph.com/en/quincy/architecture/

[16] Ceph glossary https://docs.ceph.com/en/quincy/glossary

8.3. Recommendations for a Healthy Ceph Cluster

To build a hyper-converged Proxmox + Ceph Cluster, you must use at least three
(preferably) identical servers for the setup.
Check also the recommendations from
Ceph’s website.
Note
The recommendations below should be seen as a rough guidance for choosing
hardware. Therefore, it is still essential to adapt it to your specific needs.
You should test your setup and monitor health and performance continuously.

CPU. Ceph services can be classified into two categories:
* Intensive CPU usage, benefiting from high CPU base frequencies and multiple
 cores. Members of that category are:
 Object Storage Daemon (OSD) services
 Meta Data Service (MDS) used for CephFS
* Moderate CPU usage, not needing multiple CPU cores. These are:
 Monitor (MON) services
 Manager (MGR) services
As a simple rule of thumb, you should assign at least one CPU core (or thread)
to each Ceph service to provide the minimum resources required for stable and
durable Ceph performance.
For example, if you plan to run a Ceph monitor, a Ceph manager and 6 Ceph OSDs
services on a node you should reserve 8 CPU cores purely for Ceph when targeting
basic and stable performance.
Note that OSDs CPU usage depend mostly from the disks performance. The higher
the possible IOPS (IO Operations per Second) of a disk, the more CPU
can be utilized by a OSD service.
For modern enterprise SSD disks, like NVMe’s that can permanently sustain a high
IOPS load over 100’000 with sub millisecond latency, each OSD can use multiple
CPU threads, e.g., four to six CPU threads utilized per NVMe backed OSD is
likely for very high performance disks.
Memory. Especially in a hyper-converged setup, the memory consumption needs to be
carefully planned out and monitored. In addition to the predicted memory usage
of virtual machines and containers, you must also account for having enough
memory available for Ceph to provide excellent and stable performance.
As a rule of thumb, for roughly 1 TiB of data, 1 GiB of memory will be used
by an OSD. While the usage might be less under normal conditions, it will use
most during critical operations like recovery, re-balancing or backfilling.
That means that you should avoid maxing out your available memory already on
normal operation, but rather leave some headroom to cope with outages.
The OSD service itself will use additional memory. The Ceph BlueStore backend of
the daemon requires by default 3-5 GiB of memory (adjustable).
Network. We recommend a network bandwidth of at least 10 Gbps, or more, to be used
exclusively for Ceph traffic. A meshed network setup
[17]
is also an option for three to five node clusters, if there are no 10+ Gbps
switches available.
Important
The volume of traffic, especially during recovery, will interfere
with other services on the same network, especially the latency sensitive Proxmox VE
corosync cluster stack can be affected, resulting in possible loss of cluster
quorum. Moving the Ceph traffic to dedicated and physical separated networks
will avoid such interference, not only for corosync, but also for the networking
services provided by any virtual guests.

For estimating your bandwidth needs, you need to take the performance of your
disks into account.. While a single HDD might not saturate a 1 Gb link, multiple
HDD OSDs per node can already saturate 10 Gbps too.
If modern NVMe-attached SSDs are used, a single one can already saturate 10 Gbps
of bandwidth, or more. For such high-performance setups we recommend at least
a 25 Gpbs, while even 40 Gbps or 100+ Gbps might be required to utilize the full
performance potential of the underlying disks.
If unsure, we recommend using three (physical) separate networks for
high-performance setups:
* one very high bandwidth (25+ Gbps) network for Ceph (internal) cluster
 traffic.
* one high bandwidth (10+ Gpbs) network for Ceph (public) traffic between the
 ceph server and ceph client storage traffic. Depending on your needs this can
 also be used to host the virtual guest traffic and the VM live-migration
 traffic.
* one medium bandwidth (1 Gbps) exclusive for the latency sensitive corosync
 cluster communication.
Disks. When planning the size of your Ceph cluster, it is important to take the
recovery time into consideration. Especially with small clusters, recovery
might take long. It is recommended that you use SSDs instead of HDDs in small
setups to reduce recovery time, minimizing the likelihood of a subsequent
failure event during recovery.
In general, SSDs will provide more IOPS than spinning disks. With this in mind,
in addition to the higher cost, it may make sense to implement a
class based separation of pools. Another way to
speed up OSDs is to use a faster disk as a journal or
DB/Write-Ahead-Log device, see
creating Ceph OSDs.
If a faster disk is used for multiple OSDs, a proper balance between OSD
and WAL / DB (or journal) disk must be selected, otherwise the faster disk
becomes the bottleneck for all linked OSDs.
Aside from the disk type, Ceph performs best with an evenly sized, and an evenly
distributed amount of disks per node. For example, 4 x 500 GB disks within each
node is better than a mixed setup with a single 1 TB and three 250 GB disk.
You also need to balance OSD count and single OSD capacity. More capacity
allows you to increase storage density, but it also means that a single OSD
failure forces Ceph to recover more data at once.
Avoid RAID. As Ceph handles data object redundancy and multiple parallel writes to disks
(OSDs) on its own, using a RAID controller normally doesn’t improve
performance or availability. On the contrary, Ceph is designed to handle whole
disks on it’s own, without any abstraction in between. RAID controllers are not
designed for the Ceph workload and may complicate things and sometimes even
reduce performance, as their write and caching algorithms may interfere with
the ones from Ceph.
Warning
Avoid RAID controllers. Use host bus adapter (HBA) instead.

[17] Full Mesh Network for Ceph https://pve.proxmox.com/wiki/Full_Mesh_Network_for_Ceph_Server

8.4. Initial Ceph Installation & Configuration

8.4.1. Using the Web-based Wizard

[image: screenshot/gui-node-ceph-install.png]
With Proxmox VE you have the benefit of an easy to use installation wizard
for Ceph. Click on one of your cluster nodes and navigate to the Ceph
section in the menu tree. If Ceph is not already installed, you will see a
prompt offering to do so.
The wizard is divided into multiple sections, where each needs to
finish successfully, in order to use Ceph.
First you need to chose which Ceph version you want to install. Prefer the one
from your other nodes, or the newest if this is the first node you install
Ceph.
After starting the installation, the wizard will download and install all the
required packages from Proxmox VE’s Ceph repository.
[image: screenshot/gui-node-ceph-install-wizard-step0.png]
After finishing the installation step, you will need to create a configuration.
This step is only needed once per cluster, as this configuration is distributed
automatically to all remaining cluster members through Proxmox VE’s clustered
configuration file system (pmxcfs).
The configuration step includes the following settings:
	
Public Network: This network will be used for public storage communication
 (e.g., for virtual machines using a Ceph RBD backed disk, or a CephFS mount),
 and communication between the different Ceph services. This setting is
 required.

 Separating your Ceph traffic from the Proxmox VE cluster communication (corosync),
 and possible the front-facing (public) networks of your virtual guests, is
 highly recommended. Otherwise, Ceph’s high-bandwidth IO-traffic could cause
 interference with other low-latency dependent services.

	
Cluster Network: Specify to separate the OSD replication
 and heartbeat traffic as well. This setting is optional.

 Using a physically separated network is recommended, as it will relieve the
 Ceph public and the virtual guests network, while also providing a significant
 Ceph performance improvements.

 The Ceph cluster network can be configured and moved to another physically
 separated network at a later time.

[image: screenshot/gui-node-ceph-install-wizard-step2.png]
You have two more options which are considered advanced and therefore should
only changed if you know what you are doing.
	
Number of replicas: Defines how often an object is replicated.

	
Minimum replicas: Defines the minimum number of required replicas for I/O to
 be marked as complete.

Additionally, you need to choose your first monitor node. This step is required.
That’s it. You should now see a success page as the last step, with further
instructions on how to proceed. Your system is now ready to start using Ceph.
To get started, you will need to create some additional monitors,
OSDs and at least one pool.
The rest of this chapter will guide you through getting the most out of
your Proxmox VE based Ceph setup. This includes the aforementioned tips and
more, such as CephFS, which is a helpful addition to your
new Ceph cluster.

8.4.2. CLI Installation of Ceph Packages

Alternatively to the the recommended Proxmox VE Ceph installation wizard available
in the web interface, you can use the following CLI command on each node:
pveceph install
This sets up an apt package repository in
/etc/apt/sources.list.d/ceph.list and installs the required software.

8.4.3. Initial Ceph configuration via CLI

Use the Proxmox VE Ceph installation wizard (recommended) or run the
following command on one node:
pveceph init --network 10.10.10.0/24
This creates an initial configuration at /etc/pve/ceph.conf with a
dedicated network for Ceph. This file is automatically distributed to
all Proxmox VE nodes, using pmxcfs. The command also
creates a symbolic link at /etc/ceph/ceph.conf, which points to that file.
Thus, you can simply run Ceph commands without the need to specify a
configuration file.

8.5. Ceph Monitor

[image: screenshot/gui-ceph-monitor.png]
The Ceph Monitor (MON)
[18]
maintains a master copy of the cluster map. For high availability, you need at
least 3 monitors. One monitor will already be installed if you
used the installation wizard. You won’t need more than 3 monitors, as long
as your cluster is small to medium-sized. Only really large clusters will
require more than this.
8.5.1. Create Monitors

On each node where you want to place a monitor (three monitors are recommended),
create one by using the Ceph → Monitor tab in the GUI or run:
pveceph mon create

8.5.2. Destroy Monitors

To remove a Ceph Monitor via the GUI, first select a node in the tree view and
go to the Ceph → Monitor panel. Select the MON and click the Destroy
button.
To remove a Ceph Monitor via the CLI, first connect to the node on which the MON
is running. Then execute the following command:
pveceph mon destroy
Note
At least three Monitors are needed for quorum.

[18] Ceph Monitor https://docs.ceph.com/en/quincy/start/intro/

8.6. Ceph Manager

The Manager daemon runs alongside the monitors. It provides an interface to
monitor the cluster. Since the release of Ceph luminous, at least one ceph-mgr
[19] daemon is
required.
8.6.1. Create Manager

Multiple Managers can be installed, but only one Manager is active at any given
time.
pveceph mgr create
Note
It is recommended to install the Ceph Manager on the monitor nodes. For
high availability install more then one manager.

8.6.2. Destroy Manager

To remove a Ceph Manager via the GUI, first select a node in the tree view and
go to the Ceph → Monitor panel. Select the Manager and click the
Destroy button.
To remove a Ceph Monitor via the CLI, first connect to the node on which the
Manager is running. Then execute the following command:
pveceph mgr destroy
Note
While a manager is not a hard-dependency, it is crucial for a Ceph cluster,
as it handles important features like PG-autoscaling, device health monitoring,
telemetry and more.

[19] Ceph Manager https://docs.ceph.com/en/quincy/mgr/

8.7. Ceph OSDs

[image: screenshot/gui-ceph-osd-status.png]
Ceph Object Storage Daemons store objects for Ceph over the
network. It is recommended to use one OSD per physical disk.
8.7.1. Create OSDs

You can create an OSD either via the Proxmox VE web interface or via the CLI using
pveceph. For example:
pveceph osd create /dev/sd[X]
Tip
We recommend a Ceph cluster with at least three nodes and at least 12
OSDs, evenly distributed among the nodes.

If the disk was in use before (for example, for ZFS or as an OSD) you first need
to zap all traces of that usage. To remove the partition table, boot sector and
any other OSD leftover, you can use the following command:
ceph-volume lvm zap /dev/sd[X] --destroy
Warning
The above command will destroy all data on the disk!

Ceph Bluestore. Starting with the Ceph Kraken release, a new Ceph OSD storage type was
introduced called Bluestore
[20].
This is the default when creating OSDs since Ceph Luminous.
pveceph osd create /dev/sd[X]
Block.db and block.wal. If you want to use a separate DB/WAL device for your OSDs, you can specify it
through the -db_dev and -wal_dev options. The WAL is placed with the DB, if
not specified separately.
pveceph osd create /dev/sd[X] -db_dev /dev/sd[Y] -wal_dev /dev/sd[Z]
You can directly choose the size of those with the -db_size and -wal_size
parameters respectively. If they are not given, the following values (in order)
will be used:
	
bluestore_block_{db,wal}_size from Ceph configuration…

	
… database, section osd

	
… database, section global

	
… file, section osd

	
… file, section global

	
10% (DB)/1% (WAL) of OSD size

Note
The DB stores BlueStore’s internal metadata, and the WAL is BlueStore’s
internal journal or write-ahead log. It is recommended to use a fast SSD or
NVRAM for better performance.

Ceph Filestore. Before Ceph Luminous, Filestore was used as the default storage type for Ceph OSDs.
Starting with Ceph Nautilus, Proxmox VE does not support creating such OSDs with
pveceph anymore. If you still want to create filestore OSDs, use
ceph-volume directly.
ceph-volume lvm create --filestore --data /dev/sd[X] --journal /dev/sd[Y]

8.7.2. Destroy OSDs

To remove an OSD via the GUI, first select a Proxmox VE node in the tree view and go
to the Ceph → OSD panel. Then select the OSD to destroy and click the OUT
button. Once the OSD status has changed from in to out, click the STOP
button. Finally, after the status has changed from up to down, select
Destroy from the More drop-down menu.
To remove an OSD via the CLI run the following commands.
ceph osd out <ID>
systemctl stop ceph-osd@<ID>.service
Note
The first command instructs Ceph not to include the OSD in the data
distribution. The second command stops the OSD service. Until this time, no
data is lost.

The following command destroys the OSD. Specify the -cleanup option to
additionally destroy the partition table.
pveceph osd destroy <ID>
Warning
The above command will destroy all data on the disk!

[20] Ceph Bluestore https://ceph.com/community/new-luminous-bluestore/

8.8. Ceph Pools

[image: screenshot/gui-ceph-pools.png]
A pool is a logical group for storing objects. It holds a collection of objects,
known as Placement Groups (PG, pg_num).
8.8.1. Create and Edit Pools

You can create and edit pools from the command line or the web interface of any
Proxmox VE host under Ceph → Pools.
When no options are given, we set a default of 128 PGs, a size of 3
replicas and a min_size of 2 replicas, to ensure no data loss occurs if
any OSD fails.
Warning
Do not set a min_size of 1. A replicated pool with min_size of 1
allows I/O on an object when it has only 1 replica, which could lead to data
loss, incomplete PGs or unfound objects.

It is advised that you either enable the PG-Autoscaler or calculate the PG
number based on your setup. You can find the formula and the PG calculator
[21] online. From Ceph Nautilus
onward, you can change the number of PGs
[22] after the setup.
The PG autoscaler [23] can
automatically scale the PG count for a pool in the background. Setting the
Target Size or Target Ratio advanced parameters helps the PG-Autoscaler to
make better decisions.
Example for creating a pool over the CLI.

pveceph pool create <pool-name> --add_storages

Tip
If you would also like to automatically define a storage for your
pool, keep the ‘Add as Storage’ checkbox checked in the web interface, or use the
command-line option --add_storages at pool creation.

Pool Options

[image: screenshot/gui-ceph-pool-create.png]
The following options are available on pool creation, and partially also when
editing a pool.
	
Name

	
The name of the pool. This must be unique and can’t be changed afterwards.

	
Size

	
The number of replicas per object. Ceph always tries to have this many
copies of an object. Default: 3.

	
PG Autoscale Mode

	
The automatic PG scaling mode [23] of
the pool. If set to warn, it produces a warning message when a pool
has a non-optimal PG count. Default: warn.

	
Add as Storage

	
Configure a VM or container storage using the new pool.
Default: true (only visible on creation).

Advanced Options
	
Min. Size

	
The minimum number of replicas per object. Ceph will reject I/O on
the pool if a PG has less than this many replicas. Default: 2.

	
Crush Rule

	
The rule to use for mapping object placement in the cluster. These
rules define how data is placed within the cluster. See
Ceph CRUSH & device classes for information on
device-based rules.

	
of PGs

	
The number of placement groups [22] that
the pool should have at the beginning. Default: 128.

	
Target Ratio

	
The ratio of data that is expected in the pool. The PG
autoscaler uses the ratio relative to other ratio sets. It takes precedence
over the target size if both are set.

	
Target Size

	
The estimated amount of data expected in the pool. The PG
autoscaler uses this size to estimate the optimal PG count.

	
Min. # of PGs

	
The minimum number of placement groups. This setting is used to
fine-tune the lower bound of the PG count for that pool. The PG autoscaler
will not merge PGs below this threshold.

Further information on Ceph pool handling can be found in the Ceph pool
operation [24]
manual.

8.8.2. Erasure Coded Pools

Erasure coding (EC) is a form of ‘forward error correction’ codes that allows
to recover from a certain amount of data loss. Erasure coded pools can offer
more usable space compared to replicated pools, but they do that for the price
of performance.
For comparison: in classic, replicated pools, multiple replicas of the data
are stored (size) while in erasure coded pool, data is split into k data
chunks with additional m coding (checking) chunks. Those coding chunks can be
used to recreate data should data chunks be missing.
The number of coding chunks, m, defines how many OSDs can be lost without
losing any data. The total amount of objects stored is k + m.
Creating EC Pools

Erasure coded (EC) pools can be created with the pveceph CLI tooling.
Planning an EC pool needs to account for the fact, that they work differently
than replicated pools.
The default min_size of an EC pool depends on the m parameter. If m = 1,
the min_size of the EC pool will be k. The min_size will be k + 1 if
m > 1. The Ceph documentation recommends a conservative min_size of k + 2
[25].
If there are less than min_size OSDs available, any IO to the pool will be
blocked until there are enough OSDs available again.
Note
When planning an erasure coded pool, keep an eye on the min_size as it
defines how many OSDs need to be available. Otherwise, IO will be blocked.

For example, an EC pool with k = 2 and m = 1 will have size = 3,
min_size = 2 and will stay operational if one OSD fails. If the pool is
configured with k = 2, m = 2, it will have a size = 4 and min_size = 3
and stay operational if one OSD is lost.
To create a new EC pool, run the following command:
pveceph pool create <pool-name> --erasure-coding k=2,m=1
Optional parameters are failure-domain and device-class. If you
need to change any EC profile settings used by the pool, you will have to
create a new pool with a new profile.
This will create a new EC pool plus the needed replicated pool to store the RBD
omap and other metadata. In the end, there will be a <pool name>-data and
<pool name>-metada pool. The default behavior is to create a matching storage
configuration as well. If that behavior is not wanted, you can disable it by
providing the --add_storages 0 parameter. When configuring the storage
configuration manually, keep in mind that the data-pool parameter needs to be
set. Only then will the EC pool be used to store the data objects. For example:
Note
The optional parameters --size, --min_size and --crush_rule will be
used for the replicated metadata pool, but not for the erasure coded data pool.
If you need to change the min_size on the data pool, you can do it later.
The size and crush_rule parameters cannot be changed on erasure coded
pools.

If there is a need to further customize the EC profile, you can do so by
creating it with the Ceph tools directly [26], and
specify the profile to use with the profile parameter.
For example:
pveceph pool create <pool-name> --erasure-coding profile=<profile-name>

Adding EC Pools as Storage

You can add an already existing EC pool as storage to Proxmox VE. It works the same
way as adding an RBD pool but requires the extra data-pool option.
pvesm add rbd <storage-name> --pool <replicated-pool> --data-pool <ec-pool>
Tip
Do not forget to add the keyring and monhost option for any external
Ceph clusters, not managed by the local Proxmox VE cluster.

8.8.3. Destroy Pools

To destroy a pool via the GUI, select a node in the tree view and go to the
Ceph → Pools panel. Select the pool to destroy and click the Destroy
button. To confirm the destruction of the pool, you need to enter the pool name.
Run the following command to destroy a pool. Specify the -remove_storages to
also remove the associated storage.
pveceph pool destroy <name>
Note
Pool deletion runs in the background and can take some time.
You will notice the data usage in the cluster decreasing throughout this
process.

8.8.4. PG Autoscaler

The PG autoscaler allows the cluster to consider the amount of (expected) data
stored in each pool and to choose the appropriate pg_num values automatically.
It is available since Ceph Nautilus.
You may need to activate the PG autoscaler module before adjustments can take
effect.
ceph mgr module enable pg_autoscaler
The autoscaler is configured on a per pool basis and has the following modes:
	

warn

	

A health warning is issued if the suggested pg_num value differs too
much from the current value.

	

on

	

The pg_num is adjusted automatically with no need for any manual
interaction.

	

off

	

No automatic pg_num adjustments are made, and no warning will be issued
if the PG count is not optimal.

The scaling factor can be adjusted to facilitate future data storage with the
target_size, target_size_ratio and the pg_num_min options.
Warning
By default, the autoscaler considers tuning the PG count of a pool if
it is off by a factor of 3. This will lead to a considerable shift in data
placement and might introduce a high load on the cluster.

You can find a more in-depth introduction to the PG autoscaler on Ceph’s Blog -
New in
Nautilus: PG merging and autotuning.

[21] PG calculator https://web.archive.org/web/20210301111112/http://ceph.com/pgcalc/

[22] Placement Groups https://docs.ceph.com/en/quincy/rados/operations/placement-groups/

[23] Automated Scaling https://docs.ceph.com/en/quincy/rados/operations/placement-groups/#automated-scaling

[24] Ceph pool operation
https://docs.ceph.com/en/quincy/rados/operations/pools/

[25] Ceph Erasure Coded Pool Recovery
https://docs.ceph.com/en/quincy/rados/operations/erasure-code/#erasure-coded-pool-recovery

[26] Ceph Erasure Code Profile
https://docs.ceph.com/en/quincy/rados/operations/erasure-code/#erasure-code-profiles

8.9. Ceph CRUSH & device classes

[image: screenshot/gui-ceph-config.png]
The [27] (Controlled
Replication Under Scalable Hashing) algorithm is at the
foundation of Ceph.
CRUSH calculates where to store and retrieve data from. This has the
advantage that no central indexing service is needed. CRUSH works using a map of
OSDs, buckets (device locations) and rulesets (data replication) for pools.
Note
Further information can be found in the Ceph documentation, under the
section CRUSH map [28].

This map can be altered to reflect different replication hierarchies. The object
replicas can be separated (e.g., failure domains), while maintaining the desired
distribution.
A common configuration is to use different classes of disks for different Ceph
pools. For this reason, Ceph introduced device classes with luminous, to
accommodate the need for easy ruleset generation.
The device classes can be seen in the ceph osd tree output. These classes
represent their own root bucket, which can be seen with the below command.
ceph osd crush tree --show-shadow
Example output form the above command:
ID CLASS WEIGHT TYPE NAME
-16 nvme 2.18307 root default~nvme
-13 nvme 0.72769 host sumi1~nvme
 12 nvme 0.72769 osd.12
-14 nvme 0.72769 host sumi2~nvme
 13 nvme 0.72769 osd.13
-15 nvme 0.72769 host sumi3~nvme
 14 nvme 0.72769 osd.14
 -1 7.70544 root default
 -3 2.56848 host sumi1
 12 nvme 0.72769 osd.12
 -5 2.56848 host sumi2
 13 nvme 0.72769 osd.13
 -7 2.56848 host sumi3
 14 nvme 0.72769 osd.14
To instruct a pool to only distribute objects on a specific device class, you
first need to create a ruleset for the device class:
ceph osd crush rule create-replicated <rule-name> <root> <failure-domain> <class>
	<rule-name>
	name of the rule, to connect with a pool (seen in GUI & CLI)

	<root>
	which crush root it should belong to (default Ceph root "default")

	<failure-domain>
	at which failure-domain the objects should be distributed (usually host)

	<class>
	what type of OSD backing store to use (e.g., nvme, ssd, hdd)

Once the rule is in the CRUSH map, you can tell a pool to use the ruleset.
ceph osd pool set <pool-name> crush_rule <rule-name>
Tip
If the pool already contains objects, these must be moved accordingly.
Depending on your setup, this may introduce a big performance impact on your
cluster. As an alternative, you can create a new pool and move disks separately.

[27] CRUSH
https://ceph.com/wp-content/uploads/2016/08/weil-crush-sc06.pdf

[28] CRUSH map https://docs.ceph.com/en/quincy/rados/operations/crush-map/

8.10. Ceph Client

[image: screenshot/gui-ceph-log.png]
Following the setup from the previous sections, you can configure Proxmox VE to use
such pools to store VM and Container images. Simply use the GUI to add a new
RBD storage (see section
Ceph RADOS Block Devices (RBD)).
You also need to copy the keyring to a predefined location for an external Ceph
cluster. If Ceph is installed on the Proxmox nodes itself, then this will be
done automatically.
Note
The filename needs to be <storage_id> + `.keyring, where <storage_id> is
the expression after rbd: in /etc/pve/storage.cfg. In the following example,
my-ceph-storage is the <storage_id>:

mkdir /etc/pve/priv/ceph
cp /etc/ceph/ceph.client.admin.keyring /etc/pve/priv/ceph/my-ceph-storage.keyring

8.11. CephFS

Ceph also provides a filesystem, which runs on top of the same object storage as
RADOS block devices do. A Metadata Server (MDS) is used to map the
RADOS backed objects to files and directories, allowing Ceph to provide a
POSIX-compliant, replicated filesystem. This allows you to easily configure a
clustered, highly available, shared filesystem. Ceph’s Metadata Servers
guarantee that files are evenly distributed over the entire Ceph cluster. As a
result, even cases of high load will not overwhelm a single host, which can be
an issue with traditional shared filesystem approaches, for example NFS.
[image: screenshot/gui-node-ceph-cephfs-panel.png]
Proxmox VE supports both creating a hyper-converged CephFS and using an existing
CephFS as storage to save backups, ISO files, and container
templates.
8.11.1. Metadata Server (MDS)

CephFS needs at least one Metadata Server to be configured and running, in order
to function. You can create an MDS through the Proxmox VE web GUI’s Node
-> CephFS panel or from the command line with:
pveceph mds create
Multiple metadata servers can be created in a cluster, but with the default
settings, only one can be active at a time. If an MDS or its node becomes
unresponsive (or crashes), another standby MDS will get promoted to active.
You can speed up the handover between the active and standby MDS by using
the hotstandby parameter option on creation, or if you have already created it
you may set/add:
mds standby replay = true
in the respective MDS section of /etc/pve/ceph.conf. With this enabled, the
specified MDS will remain in a warm state, polling the active one, so that it
can take over faster in case of any issues.
Note
This active polling will have an additional performance impact on your
system and the active MDS.

Multiple Active MDS. Since Luminous (12.2.x) you can have multiple active metadata servers
running at once, but this is normally only useful if you have a high amount of
clients running in parallel. Otherwise the MDS is rarely the bottleneck in a
system. If you want to set this up, please refer to the Ceph documentation.
[29]

8.11.2. Create CephFS

With Proxmox VE’s integration of CephFS, you can easily create a CephFS using the
web interface, CLI or an external API interface. Some prerequisites are required
for this to work:
Prerequisites for a successful CephFS setup:
	
Install Ceph packages - if this was already done some
time ago, you may want to rerun it on an up-to-date system to
ensure that all CephFS related packages get installed.

	
Setup Monitors

	
Setup your OSDs

	
Setup at least one MDS

After this is complete, you can simply create a CephFS through
either the Web GUI’s Node -> CephFS panel or the command-line tool pveceph,
for example:
pveceph fs create --pg_num 128 --add-storage
This creates a CephFS named cephfs, using a pool for its data named
cephfs_data with 128 placement groups and a pool for its metadata named
cephfs_metadata with one quarter of the data pool’s placement groups (32).
Check the Proxmox VE managed Ceph pool chapter or visit the
Ceph documentation for more information regarding an appropriate placement group
number (pg_num) for your setup [22].
Additionally, the --add-storage parameter will add the CephFS to the Proxmox VE
storage configuration after it has been created successfully.

8.11.3. Destroy CephFS

Warning
Destroying a CephFS will render all of its data unusable. This cannot be
undone!

To completely and gracefully remove a CephFS, the following steps are
necessary:
	
Disconnect every non-Proxmox VE client (e.g. unmount the CephFS in guests).

	
Disable all related CephFS Proxmox VE storage entries (to prevent it from being
 automatically mounted).

	
Remove all used resources from guests (e.g. ISOs) that are on the CephFS you
 want to destroy.

	
Unmount the CephFS storages on all cluster nodes manually with

umount /mnt/pve/<STORAGE-NAME>
Where <STORAGE-NAME> is the name of the CephFS storage in your Proxmox VE.

	
Now make sure that no metadata server (MDS) is running for that CephFS,
 either by stopping or destroying them. This can be done through the web
 interface or via the command-line interface, for the latter you would issue
 the following command:

pveceph stop --service mds.NAME
to stop them, or
pveceph mds destroy NAME
to destroy them.
Note that standby servers will automatically be promoted to active when an
active MDS is stopped or removed, so it is best to first stop all standby
servers.

	
Now you can destroy the CephFS with

pveceph fs destroy NAME --remove-storages --remove-pools
This will automatically destroy the underlying Ceph pools as well as remove
the storages from pve config.

After these steps, the CephFS should be completely removed and if you have
other CephFS instances, the stopped metadata servers can be started again
to act as standbys.

[29] Configuring multiple active MDS daemons
https://docs.ceph.com/en/quincy/cephfs/multimds/

8.12. Ceph maintenance

8.12.1. Replace OSDs

One of the most common maintenance tasks in Ceph is to replace the disk of an
OSD. If a disk is already in a failed state, then you can go ahead and run
through the steps in Destroy OSDs. Ceph will recreate
those copies on the remaining OSDs if possible. This rebalancing will start as
soon as an OSD failure is detected or an OSD was actively stopped.
Note
With the default size/min_size (3/2) of a pool, recovery only starts when
‘size + 1` nodes are available. The reason for this is that the Ceph object
balancer CRUSH defaults to a full node as
`failure domain’.

To replace a functioning disk from the GUI, go through the steps in
Destroy OSDs. The only addition is to wait until
the cluster shows HEALTH_OK before stopping the OSD to destroy it.
On the command line, use the following commands:
ceph osd out osd.<id>
You can check with the command below if the OSD can be safely removed.
ceph osd safe-to-destroy osd.<id>
Once the above check tells you that it is safe to remove the OSD, you can
continue with the following commands:
systemctl stop ceph-osd@<id>.service
pveceph osd destroy <id>
Replace the old disk with the new one and use the same procedure as described
in Create OSDs.

8.12.2. Trim/Discard

It is good practice to run fstrim (discard) regularly on VMs and containers.
This releases data blocks that the filesystem isn’t using anymore. It reduces
data usage and resource load. Most modern operating systems issue such discard
commands to their disks regularly. You only need to ensure that the Virtual
Machines enable the disk discard option.

8.12.3. Scrub & Deep Scrub

Ceph ensures data integrity by scrubbing placement groups. Ceph checks every
object in a PG for its health. There are two forms of Scrubbing, daily
cheap metadata checks and weekly deep data checks. The weekly deep scrub reads
the objects and uses checksums to ensure data integrity. If a running scrub
interferes with business (performance) needs, you can adjust the time when
scrubs [30]
are executed.

[30] Ceph scrubbing https://docs.ceph.com/en/quincy/rados/configuration/osd-config-ref/#scrubbing

8.13. Ceph Monitoring and Troubleshooting

It is important to continuously monitor the health of a Ceph deployment from the
beginning, either by using the Ceph tools or by accessing
the status through the Proxmox VE API.
The following Ceph commands can be used to see if the cluster is healthy
(HEALTH_OK), if there are warnings (HEALTH_WARN), or even errors
(HEALTH_ERR). If the cluster is in an unhealthy state, the status commands
below will also give you an overview of the current events and actions to take.
single time output
pve# ceph -s
continuously output status changes (press CTRL+C to stop)
pve# ceph -w
To get a more detailed view, every Ceph service has a log file under
/var/log/ceph/. If more detail is required, the log level can be
adjusted [31].
You can find more information about troubleshooting
[32]
a Ceph cluster on the official website.

[31] Ceph log and debugging https://docs.ceph.com/en/quincy/rados/troubleshooting/log-and-debug/

[32] Ceph troubleshooting https://docs.ceph.com/en/quincy/rados/troubleshooting/

Chapter 9. Storage Replication

The pvesr command-line tool manages the Proxmox VE storage replication
framework. Storage replication brings redundancy for guests using
local storage and reduces migration time.
It replicates guest volumes to another node so that all data is available
without using shared storage. Replication uses snapshots to minimize traffic
sent over the network. Therefore, new data is sent only incrementally after
the initial full sync. In the case of a node failure, your guest data is
still available on the replicated node.
The replication is done automatically in configurable intervals.
The minimum replication interval is one minute, and the maximal interval
once a week. The format used to specify those intervals is a subset of
systemd calendar events, see
Schedule Format section:
It is possible to replicate a guest to multiple target nodes,
but not twice to the same target node.
Each replications bandwidth can be limited, to avoid overloading a storage
or server.
Only changes since the last replication (so-called deltas) need to be
transferred if the guest is migrated to a node to which it already is
replicated. This reduces the time needed significantly. The replication
direction automatically switches if you migrate a guest to the replication
target node.
For example: VM100 is currently on nodeA and gets replicated to nodeB.
You migrate it to nodeB, so now it gets automatically replicated back from
nodeB to nodeA.
If you migrate to a node where the guest is not replicated, the whole disk
data must send over. After the migration, the replication job continues to
replicate this guest to the configured nodes.
Important
High-Availability is allowed in combination with storage replication, but there
may be some data loss between the last synced time and the time a node failed.

9.1. Supported Storage Types

Table 9.1. Storage Types
	Description 	Plugin type 	Snapshots	Stable
	ZFS (local)
	zfspool
	yes
	yes

9.2. Schedule Format

Replication uses calendar events for
configuring the schedule.

9.3. Error Handling

If a replication job encounters problems, it is placed in an error state.
In this state, the configured replication intervals get suspended
temporarily. The failed replication is repeatedly tried again in a
30 minute interval.
Once this succeeds, the original schedule gets activated again.
9.3.1. Possible issues

Some of the most common issues are in the following list. Depending on your
setup there may be another cause.
	
Network is not working.

	
No free space left on the replication target storage.

	
Storage with same storage ID available on the target node

Note
You can always use the replication log to find out what is causing the problem.

9.3.2. Migrating a guest in case of Error

In the case of a grave error, a virtual guest may get stuck on a failed
node. You then need to move it manually to a working node again.

9.3.3. Example

Let’s assume that you have two guests (VM 100 and CT 200) running on node A
and replicate to node B.
Node A failed and can not get back online. Now you have to migrate the guest
to Node B manually.
	
connect to node B over ssh or open its shell via the web UI

	
check if that the cluster is quorate

pvecm status

	
If you have no quorum, we strongly advise to fix this first and make the
 node operable again. Only if this is not possible at the moment, you may
 use the following command to enforce quorum on the current node:

pvecm expected 1

Warning
Avoid changes which affect the cluster if expected votes are set
(for example adding/removing nodes, storages, virtual guests) at all costs.
Only use it to get vital guests up and running again or to resolve the quorum
issue itself.

	
move both guest configuration files form the origin node A to node B:

mv /etc/pve/nodes/A/qemu-server/100.conf /etc/pve/nodes/B/qemu-server/100.conf
mv /etc/pve/nodes/A/lxc/200.conf /etc/pve/nodes/B/lxc/200.conf

	
Now you can start the guests again:

qm start 100
pct start 200

Remember to replace the VMIDs and node names with your respective values.

9.4. Managing Jobs

[image: screenshot/gui-qemu-add-replication-job.png]
You can use the web GUI to create, modify, and remove replication jobs
easily. Additionally, the command-line interface (CLI) tool pvesr can be
used to do this.
You can find the replication panel on all levels (datacenter, node, virtual
guest) in the web GUI. They differ in which jobs get shown:
all, node- or guest-specific jobs.
When adding a new job, you need to specify the guest if not already selected
as well as the target node. The replication
schedule can be set if the default of all
15 minutes is not desired. You may impose a rate-limit on a replication
job. The rate limit can help to keep the load on the storage acceptable.
A replication job is identified by a cluster-wide unique ID. This ID is
composed of the VMID in addition to a job number.
This ID must only be specified manually if the CLI tool is used.

9.5. Command-line Interface Examples

Create a replication job which runs every 5 minutes with a limited bandwidth
of 10 Mbps (megabytes per second) for the guest with ID 100.
pvesr create-local-job 100-0 pve1 --schedule "*/5" --rate 10
Disable an active job with ID 100-0.
pvesr disable 100-0
Enable a deactivated job with ID 100-0.
pvesr enable 100-0
Change the schedule interval of the job with ID 100-0 to once per hour.
pvesr update 100-0 --schedule '*/00'

Chapter 10. QEMU/KVM Virtual Machines

QEMU (short form for Quick Emulator) is an open source hypervisor that emulates a
physical computer. From the perspective of the host system where QEMU is
running, QEMU is a user program which has access to a number of local resources
like partitions, files, network cards which are then passed to an
emulated computer which sees them as if they were real devices.
A guest operating system running in the emulated computer accesses these
devices, and runs as if it were running on real hardware. For instance, you can pass
an ISO image as a parameter to QEMU, and the OS running in the emulated computer
will see a real CD-ROM inserted into a CD drive.
QEMU can emulate a great variety of hardware from ARM to Sparc, but Proxmox VE is
only concerned with 32 and 64 bits PC clone emulation, since it represents the
overwhelming majority of server hardware. The emulation of PC clones is also one
of the fastest due to the availability of processor extensions which greatly
speed up QEMU when the emulated architecture is the same as the host
architecture.
Note
You may sometimes encounter the term KVM (Kernel-based Virtual Machine).
It means that QEMU is running with the support of the virtualization processor
extensions, via the Linux KVM module. In the context of Proxmox VE QEMU and
KVM can be used interchangeably, as QEMU in Proxmox VE will always try to load the KVM
module.

QEMU inside Proxmox VE runs as a root process, since this is required to access block
and PCI devices.

10.1. Emulated devices and paravirtualized devices

The PC hardware emulated by QEMU includes a motherboard, network controllers,
SCSI, IDE and SATA controllers, serial ports (the complete list can be seen in
the kvm(1) man page) all of them emulated in software. All these devices
are the exact software equivalent of existing hardware devices, and if the OS
running in the guest has the proper drivers it will use the devices as if it
were running on real hardware. This allows QEMU to run unmodified operating
systems.
This however has a performance cost, as running in software what was meant to
run in hardware involves a lot of extra work for the host CPU. To mitigate this,
QEMU can present to the guest operating system paravirtualized devices, where
the guest OS recognizes it is running inside QEMU and cooperates with the
hypervisor.
QEMU relies on the virtio virtualization standard, and is thus able to present
paravirtualized virtio devices, which includes a paravirtualized generic disk
controller, a paravirtualized network card, a paravirtualized serial port,
a paravirtualized SCSI controller, etc …
Tip
It is highly recommended to use the virtio devices whenever you can, as
they provide a big performance improvement and are generally better maintained.
Using the virtio generic disk controller versus an emulated IDE controller will
double the sequential write throughput, as measured with bonnie++(8). Using
the virtio network interface can deliver up to three times the throughput of an
emulated Intel E1000 network card, as measured with iperf(1). [33]

[33] See
this benchmark on the KVM wiki https://www.linux-kvm.org/page/Using_VirtIO_NIC

10.2. Virtual Machines Settings

Generally speaking Proxmox VE tries to choose sane defaults for virtual machines
(VM). Make sure you understand the meaning of the settings you change, as it
could incur a performance slowdown, or putting your data at risk.
10.2.1. General Settings

[image: screenshot/gui-create-vm-general.png]
General settings of a VM include
	
the Node : the physical server on which the VM will run

	
the VM ID: a unique number in this Proxmox VE installation used to identify your VM

	
Name: a free form text string you can use to describe the VM

	
Resource Pool: a logical group of VMs

10.2.2. OS Settings

[image: screenshot/gui-create-vm-os.png]
When creating a virtual machine (VM), setting the proper Operating System(OS)
allows Proxmox VE to optimize some low level parameters. For instance Windows OS
expect the BIOS clock to use the local time, while Unix based OS expect the
BIOS clock to have the UTC time.

10.2.3. System Settings

On VM creation you can change some basic system components of the new VM. You
can specify which display type you want to use.
[image: screenshot/gui-create-vm-system.png]
Additionally, the SCSI controller can be changed.
If you plan to install the QEMU Guest Agent, or if your selected ISO image
already ships and installs it automatically, you may want to tick the QEMU
Agent box, which lets Proxmox VE know that it can use its features to show some
more information, and complete some actions (for example, shutdown or
snapshots) more intelligently.
Proxmox VE allows to boot VMs with different firmware and machine types, namely
SeaBIOS and OVMF. In most cases you want to switch from
the default SeaBIOS to OVMF only if you plan to use
PCIe passthrough.
Machine Type

A VM’s Machine Type defines the hardware layout of the VM’s virtual
motherboard. You can choose between the default
Intel 440FX or the
Q35
chipset, which also provides a virtual PCIe bus, and thus may be
desired if you want to pass through PCIe hardware.
Machine Version

Each machine type is versioned in QEMU and a given QEMU binary supports many
machine versions. New versions might bring support for new features, fixes or
general improvements. However, they also change properties of the virtual
hardware. To avoid sudden changes from the guest’s perspective and ensure
compatibility of the VM state, live-migration and snapshots with RAM will keep
using the same machine version in the new QEMU instance.
For Windows guests, the machine version is pinned during creation, because
Windows is sensitive to changes in the virtual hardware - even between cold
boots. For example, the enumeration of network devices might be different with
different machine versions. Other OSes like Linux can usually deal with such
changes just fine. For those, the Latest machine version is used by default.
This means that after a fresh start, the newest machine version supported by the
QEMU binary is used (e.g. the newest machine version QEMU 8.1 supports is
version 8.1 for each machine type).

Update to a Newer Machine Version

Very old machine versions might become deprecated in QEMU. For example, this is
the case for versions 1.4 to 1.7 for the i440fx machine type. It is expected
that support for these machine versions will be dropped at some point. If you
see a deprecation warning, you should change the machine version to a newer one.
Be sure to have a working backup first and be prepared for changes to how the
guest sees hardware. In some scenarios, re-installing certain drivers might be
required. You should also check for snapshots with RAM that were taken with
these machine versions (i.e. the runningmachine configuration entry).
Unfortunately, there is no way to change the machine version of a snapshot, so
you’d need to load the snapshot to salvage any data from it.

10.2.4. Hard Disk

Bus/Controller

QEMU can emulate a number of storage controllers:
Tip
It is highly recommended to use the VirtIO SCSI or VirtIO Block
controller for performance reasons and because they are better maintained.

	
the IDE controller, has a design which goes back to the 1984 PC/AT disk
controller. Even if this controller has been superseded by recent designs,
each and every OS you can think of has support for it, making it a great choice
if you want to run an OS released before 2003. You can connect up to 4 devices
on this controller.

	
the SATA (Serial ATA) controller, dating from 2003, has a more modern
design, allowing higher throughput and a greater number of devices to be
connected. You can connect up to 6 devices on this controller.

	
the SCSI controller, designed in 1985, is commonly found on server grade
hardware, and can connect up to 14 storage devices. Proxmox VE emulates by default a
LSI 53C895A controller.

A SCSI controller of type VirtIO SCSI single and enabling the
IO Thread setting for the attached disks is
recommended if you aim for performance. This is the default for newly created
Linux VMs since Proxmox VE 7.3. Each disk will have its own VirtIO SCSI controller,
and QEMU will handle the disks IO in a dedicated thread. Linux distributions
have support for this controller since 2012, and FreeBSD since 2014. For Windows
OSes, you need to provide an extra ISO containing the drivers during the
installation.

	
The VirtIO Block controller, often just called VirtIO or virtio-blk,
is an older type of paravirtualized controller. It has been superseded by the
VirtIO SCSI Controller, in terms of features.

Image Format

On each controller you attach a number of emulated hard disks, which are backed
by a file or a block device residing in the configured storage. The choice of
a storage type will determine the format of the hard disk image. Storages which
present block devices (LVM, ZFS, Ceph) will require the raw disk image format,
whereas files based storages (Ext4, NFS, CIFS, GlusterFS) will let you to choose
either the raw disk image format or the QEMU image format.
	
the QEMU image format is a copy on write format which allows snapshots, and
 thin provisioning of the disk image.

	
the raw disk image is a bit-to-bit image of a hard disk, similar to what
 you would get when executing the dd command on a block device in Linux. This
 format does not support thin provisioning or snapshots by itself, requiring
 cooperation from the storage layer for these tasks. It may, however, be up to
 10% faster than the QEMU image format. [34]

	
the VMware image format only makes sense if you intend to import/export the
 disk image to other hypervisors.

Cache Mode

Setting the Cache mode of the hard drive will impact how the host system will
notify the guest systems of block write completions. The No cache default
means that the guest system will be notified that a write is complete when each
block reaches the physical storage write queue, ignoring the host page cache.
This provides a good balance between safety and speed.
If you want the Proxmox VE backup manager to skip a disk when doing a backup of a VM,
you can set the No backup option on that disk.
If you want the Proxmox VE storage replication mechanism to skip a disk when starting
 a replication job, you can set the Skip replication option on that disk.
As of Proxmox VE 5.0, replication requires the disk images to be on a storage of type
zfspool, so adding a disk image to other storages when the VM has replication
configured requires to skip replication for this disk image.

Trim/Discard

If your storage supports thin provisioning (see the storage chapter in the
Proxmox VE guide), you can activate the Discard option on a drive. With Discard
set and a TRIM-enabled guest OS [35], when the VM’s filesystem
marks blocks as unused after deleting files, the controller will relay this
information to the storage, which will then shrink the disk image accordingly.
For the guest to be able to issue TRIM commands, you must enable the Discard
option on the drive. Some guest operating systems may also require the
SSD Emulation flag to be set. Note that Discard on VirtIO Block drives is
only supported on guests using Linux Kernel 5.0 or higher.
If you would like a drive to be presented to the guest as a solid-state drive
rather than a rotational hard disk, you can set the SSD emulation option on
that drive. There is no requirement that the underlying storage actually be
backed by SSDs; this feature can be used with physical media of any type.
Note that SSD emulation is not supported on VirtIO Block drives.

IO Thread

The option IO Thread can only be used when using a disk with the VirtIO
controller, or with the SCSI controller, when the emulated controller type is
VirtIO SCSI single. With IO Thread enabled, QEMU creates one I/O thread per
storage controller rather than handling all I/O in the main event loop or vCPU
threads. One benefit is better work distribution and utilization of the
underlying storage. Another benefit is reduced latency (hangs) in the guest for
very I/O-intensive host workloads, since neither the main thread nor a vCPU
thread can be blocked by disk I/O.

10.2.5. CPU

[image: screenshot/gui-create-vm-cpu.png]
A CPU socket is a physical slot on a PC motherboard where you can plug a CPU.
This CPU can then contain one or many cores, which are independent
processing units. Whether you have a single CPU socket with 4 cores, or two CPU
sockets with two cores is mostly irrelevant from a performance point of view.
However some software licenses depend on the number of sockets a machine has,
in that case it makes sense to set the number of sockets to what the license
allows you.
Increasing the number of virtual CPUs (cores and sockets) will usually provide a
performance improvement though that is heavily dependent on the use of the VM.
Multi-threaded applications will of course benefit from a large number of
virtual CPUs, as for each virtual cpu you add, QEMU will create a new thread of
execution on the host system. If you’re not sure about the workload of your VM,
it is usually a safe bet to set the number of Total cores to 2.
Note
It is perfectly safe if the overall number of cores of all your VMs
is greater than the number of cores on the server (for example, 4 VMs each with
4 cores (= total 16) on a machine with only 8 cores). In that case the host
system will balance the QEMU execution threads between your server cores, just
like if you were running a standard multi-threaded application. However, Proxmox VE
will prevent you from starting VMs with more virtual CPU cores than physically
available, as this will only bring the performance down due to the cost of
context switches.

Resource Limits

cpulimit
In addition to the number of virtual cores, the total available “Host CPU
Time” for the VM can be set with the cpulimit option. It is a floating point
value representing CPU time in percent, so 1.0 is equal to 100%, 2.5 to
250% and so on. If a single process would fully use one single core it would
have 100% CPU Time usage. If a VM with four cores utilizes all its cores
fully it would theoretically use 400%. In reality the usage may be even a bit
higher as QEMU can have additional threads for VM peripherals besides the vCPU
core ones.
This setting can be useful when a VM should have multiple vCPUs because it is
running some processes in parallel, but the VM as a whole should not be able to
run all vCPUs at 100% at the same time.
For example, suppose you have a virtual machine that would benefit from having 8
virtual CPUs, but you don’t want the VM to be able to max out all 8 cores
running at full load - because that would overload the server and leave other
virtual machines and containers with too little CPU time. To solve this, you
could set cpulimit to 4.0 (=400%). This means that if the VM fully utilizes
all 8 virtual CPUs by running 8 processes simultaneously, each vCPU will receive
a maximum of 50% CPU time from the physical cores. However, if the VM workload
only fully utilizes 4 virtual CPUs, it could still receive up to 100% CPU time
from a physical core, for a total of 400%.
Note
VMs can, depending on their configuration, use additional threads, such
as for networking or IO operations but also live migration. Thus a VM can show
up to use more CPU time than just its virtual CPUs could use. To ensure that a
VM never uses more CPU time than vCPUs assigned, set the cpulimit to
the same value as the total core count.

cpuuntis
With the cpuunits option, nowadays often called CPU shares or CPU weight, you
can control how much CPU time a VM gets compared to other running VMs. It is a
relative weight which defaults to 100 (or 1024 if the host uses legacy
cgroup v1). If you increase this for a VM it will be prioritized by the
scheduler in comparison to other VMs with lower weight.
For example, if VM 100 has set the default 100 and VM 200 was changed to
200, the latter VM 200 would receive twice the CPU bandwidth than the first
VM 100.
For more information see man systemd.resource-control, here CPUQuota
corresponds to cpulimit and CPUWeight to our cpuunits setting. Visit its
Notes section for references and implementation details.
affinity
With the affinity option, you can specify the physical CPU cores that are used
to run the VM’s vCPUs. Peripheral VM processes, such as those for I/O, are not
affected by this setting. Note that the CPU affinity is not a security
feature.
Forcing a CPU affinity can make sense in certain cases but is accompanied by
an increase in complexity and maintenance effort. For example, if you want to
add more VMs later or migrate VMs to nodes with fewer CPU cores. It can also
easily lead to asynchronous and therefore limited system performance if some
CPUs are fully utilized while others are almost idle.
The affinity is set through the taskset CLI tool. It accepts the host CPU
numbers (see lscpu) in the List Format from man cpuset. This ASCII decimal
list can contain numbers but also number ranges. For example, the affinity
0-1,8-11 (expanded 0, 1, 8, 9, 10, 11) would allow the VM to run on only
these six specific host cores.

CPU Type

QEMU can emulate a number different of CPU types from 486 to the latest Xeon
processors. Each new processor generation adds new features, like hardware
assisted 3d rendering, random number generation, memory protection, etc. Also,
a current generation can be upgraded through
microcode update with bug or security fixes.
Usually you should select for your VM a processor type which closely matches the
CPU of the host system, as it means that the host CPU features (also called CPU
flags) will be available in your VMs. If you want an exact match, you can set
the CPU type to host in which case the VM will have exactly the same CPU flags
as your host system.
This has a downside though. If you want to do a live migration of VMs between
different hosts, your VM might end up on a new system with a different CPU type
or a different microcode version.
If the CPU flags passed to the guest are missing, the QEMU process will stop. To
remedy this QEMU has also its own virtual CPU types, that Proxmox VE uses by default.
The backend default is kvm64 which works on essentially all x86_64 host CPUs
and the UI default when creating a new VM is x86-64-v2-AES, which requires a
host CPU starting from Westmere for Intel or at least a fourth generation
Opteron for AMD.
In short:
If you don’t care about live migration or have a homogeneous cluster where all
nodes have the same CPU and same microcode version, set the CPU type to host, as
in theory this will give your guests maximum performance.
If you care about live migration and security, and you have only Intel CPUs or
only AMD CPUs, choose the lowest generation CPU model of your cluster.
If you care about live migration without security, or have mixed Intel/AMD
cluster, choose the lowest compatible virtual QEMU CPU type.
Note
Live migrations between Intel and AMD host CPUs have no guarantee to work.

See also
List of AMD and Intel CPU Types as Defined in QEMU.

QEMU CPU Types

QEMU also provide virtual CPU types, compatible with both Intel and AMD host
CPUs.
Note
To mitigate the Spectre vulnerability for virtual CPU types, you need to
add the relevant CPU flags, see
Meltdown / Spectre related CPU flags.

Historically, Proxmox VE had the kvm64 CPU model, with CPU flags at the level of
Pentium 4 enabled, so performance was not great for certain workloads.
In the summer of 2020, AMD, Intel, Red Hat, and SUSE collaborated to define
three x86-64 microarchitecture levels on top of the x86-64 baseline, with modern
flags enabled. For details, see the
x86-64-ABI specification.
Note
Some newer distributions like CentOS 9 are now built with x86-64-v2
flags as a minimum requirement.

	
kvm64 (x86-64-v1): Compatible with Intel CPU >= Pentium 4, AMD CPU >=
Phenom.

	
x86-64-v2: Compatible with Intel CPU >= Nehalem, AMD CPU >= Opteron_G3.
Added CPU flags compared to x86-64-v1: +cx16, +lahf-lm, +popcnt, +pni,
+sse4.1, +sse4.2, +ssse3.

	
x86-64-v2-AES: Compatible with Intel CPU >= Westmere, AMD CPU >= Opteron_G4.
Added CPU flags compared to x86-64-v2: +aes.

	
x86-64-v3: Compatible with Intel CPU >= Broadwell, AMD CPU >= EPYC. Added
CPU flags compared to x86-64-v2-AES: +avx, +avx2, +bmi1, +bmi2,
+f16c, +fma, +movbe, +xsave.

	
x86-64-v4: Compatible with Intel CPU >= Skylake, AMD CPU >= EPYC v4 Genoa.
Added CPU flags compared to x86-64-v3: +avx512f, +avx512bw, +avx512cd,
+avx512dq, +avx512vl.

Custom CPU Types

You can specify custom CPU types with a configurable set of features. These are
maintained in the configuration file /etc/pve/virtual-guest/cpu-models.conf by
an administrator. See man cpu-models.conf for format details.
Specified custom types can be selected by any user with the Sys.Audit
privilege on /nodes. When configuring a custom CPU type for a VM via the CLI
or API, the name needs to be prefixed with custom-.

Meltdown / Spectre related CPU flags

There are several CPU flags related to the Meltdown and Spectre vulnerabilities
[36] which need to be set
manually unless the selected CPU type of your VM already enables them by default.
There are two requirements that need to be fulfilled in order to use these
CPU flags:
	
The host CPU(s) must support the feature and propagate it to the guest’s virtual CPU(s)

	
The guest operating system must be updated to a version which mitigates the
 attacks and is able to utilize the CPU feature

Otherwise you need to set the desired CPU flag of the virtual CPU, either by
editing the CPU options in the web UI, or by setting the flags property of the
cpu option in the VM configuration file.
For Spectre v1,v2,v4 fixes, your CPU or system vendor also needs to provide a
so-called “microcode update” for your CPU, see
chapter Firmware Updates. Note that not all
affected CPUs can be updated to support spec-ctrl.
To check if the Proxmox VE host is vulnerable, execute the following command as root:
for f in /sys/devices/system/cpu/vulnerabilities/*; do echo "${f##*/} -" $(cat "$f"); done
A community script is also available to detect if the host is still vulnerable.
[37]

Intel processors

	
pcid

This reduces the performance impact of the Meltdown (CVE-2017-5754) mitigation
called Kernel Page-Table Isolation (KPTI), which effectively hides
the Kernel memory from the user space. Without PCID, KPTI is quite an expensive
mechanism [38].
To check if the Proxmox VE host supports PCID, execute the following command as root:
grep ' pcid ' /proc/cpuinfo
If this does not return empty your host’s CPU has support for pcid.

	
spec-ctrl

Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix,
in cases where retpolines are not sufficient.
Included by default in Intel CPU models with -IBRS suffix.
Must be explicitly turned on for Intel CPU models without -IBRS suffix.
Requires an updated host CPU microcode (intel-microcode >= 20180425).

	
ssbd

Required to enable the Spectre V4 (CVE-2018-3639) fix. Not included by default in any Intel CPU model.
Must be explicitly turned on for all Intel CPU models.
Requires an updated host CPU microcode(intel-microcode >= 20180703).

AMD processors

	
ibpb

Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix,
in cases where retpolines are not sufficient.
Included by default in AMD CPU models with -IBPB suffix.
Must be explicitly turned on for AMD CPU models without -IBPB suffix.
Requires the host CPU microcode to support this feature before it can be used for guest CPUs.

	
virt-ssbd

Required to enable the Spectre v4 (CVE-2018-3639) fix.
Not included by default in any AMD CPU model.
Must be explicitly turned on for all AMD CPU models.
This should be provided to guests, even if amd-ssbd is also provided, for maximum guest compatibility.
Note that this must be explicitly enabled when when using the "host" cpu model,
because this is a virtual feature which does not exist in the physical CPUs.

	
amd-ssbd

Required to enable the Spectre v4 (CVE-2018-3639) fix.
Not included by default in any AMD CPU model. Must be explicitly turned on for all AMD CPU models.
This provides higher performance than virt-ssbd, therefore a host supporting this should always expose this to guests if possible.
virt-ssbd should none the less also be exposed for maximum guest compatibility as some kernels only know about virt-ssbd.

	
amd-no-ssb

Recommended to indicate the host is not vulnerable to Spectre V4 (CVE-2018-3639).
Not included by default in any AMD CPU model.
Future hardware generations of CPU will not be vulnerable to CVE-2018-3639,
and thus the guest should be told not to enable its mitigations, by exposing amd-no-ssb.
This is mutually exclusive with virt-ssbd and amd-ssbd.

NUMA

You can also optionally emulate a NUMA
[39] architecture
in your VMs. The basics of the NUMA architecture mean that instead of having a
global memory pool available to all your cores, the memory is spread into local
banks close to each socket.
This can bring speed improvements as the memory bus is not a bottleneck
anymore. If your system has a NUMA architecture [40] we recommend to activate the option, as this
will allow proper distribution of the VM resources on the host system.
This option is also required to hot-plug cores or RAM in a VM.
If the NUMA option is used, it is recommended to set the number of sockets to
the number of nodes of the host system.

vCPU hot-plug

Modern operating systems introduced the capability to hot-plug and, to a
certain extent, hot-unplug CPUs in a running system. Virtualization allows us
to avoid a lot of the (physical) problems real hardware can cause in such
scenarios.
Still, this is a rather new and complicated feature, so its use should be
restricted to cases where its absolutely needed. Most of the functionality can
be replicated with other, well tested and less complicated, features, see
Resource Limits.
In Proxmox VE the maximal number of plugged CPUs is always cores * sockets.
To start a VM with less than this total core count of CPUs you may use the
vcpus setting, it denotes how many vCPUs should be plugged in at VM start.
Currently only this feature is only supported on Linux, a kernel newer than 3.10
is needed, a kernel newer than 4.7 is recommended.
You can use a udev rule as follow to automatically set new CPUs as online in
the guest:
SUBSYSTEM=="cpu", ACTION=="add", TEST=="online", ATTR{online}=="0", ATTR{online}="1"
Save this under /etc/udev/rules.d/ as a file ending in .rules.
Note: CPU hot-remove is machine dependent and requires guest cooperation. The
deletion command does not guarantee CPU removal to actually happen, typically
it’s a request forwarded to guest OS using target dependent mechanism, such as
ACPI on x86/amd64.

10.2.6. Memory

For each VM you have the option to set a fixed size memory or asking
Proxmox VE to dynamically allocate memory based on the current RAM usage of the
host.
Fixed Memory Allocation.

[image: screenshot/gui-create-vm-memory.png]
When setting memory and minimum memory to the same amount
Proxmox VE will simply allocate what you specify to your VM.
Even when using a fixed memory size, the ballooning device gets added to the
VM, because it delivers useful information such as how much memory the guest
really uses.
In general, you should leave ballooning enabled, but if you want to disable
it (like for debugging purposes), simply uncheck Ballooning Device or set
balloon: 0
in the configuration.
Automatic Memory Allocation. When setting the minimum memory lower than memory, Proxmox VE will make sure that the
minimum amount you specified is always available to the VM, and if RAM usage on
the host is below 80%, will dynamically add memory to the guest up to the
maximum memory specified.
When the host is running low on RAM, the VM will then release some memory
back to the host, swapping running processes if needed and starting the oom
killer in last resort. The passing around of memory between host and guest is
done via a special balloon kernel driver running inside the guest, which will
grab or release memory pages from the host.
[41]
When multiple VMs use the autoallocate facility, it is possible to set a
Shares coefficient which indicates the relative amount of the free host memory
that each VM should take. Suppose for instance you have four VMs, three of them
running an HTTP server and the last one is a database server. To cache more
database blocks in the database server RAM, you would like to prioritize the
database VM when spare RAM is available. For this you assign a Shares property
of 3000 to the database VM, leaving the other VMs to the Shares default setting
of 1000. The host server has 32GB of RAM, and is currently using 16GB, leaving 32
* 80/100 - 16 = 9GB RAM to be allocated to the VMs on top of their configured
minimum memory amount. The database VM will benefit from 9 * 3000 / (3000
1000 + 1000 + 1000) = 4.5 GB extra RAM and each HTTP server from 1.5 GB.
All Linux distributions released after 2010 have the balloon kernel driver
included. For Windows OSes, the balloon driver needs to be added manually and can
incur a slowdown of the guest, so we don’t recommend using it on critical
systems.
When allocating RAM to your VMs, a good rule of thumb is always to leave 1GB
of RAM available to the host.

10.2.7. Network Device

[image: screenshot/gui-create-vm-network.png]
Each VM can have many Network interface controllers (NIC), of four different
types:
	
Intel E1000 is the default, and emulates an Intel Gigabit network card.

	
the VirtIO paravirtualized NIC should be used if you aim for maximum
performance. Like all VirtIO devices, the guest OS should have the proper driver
installed.

	
the Realtek 8139 emulates an older 100 MB/s network card, and should
only be used when emulating older operating systems (released before 2002)

	
the vmxnet3 is another paravirtualized device, which should only be used
when importing a VM from another hypervisor.

Proxmox VE will generate for each NIC a random MAC address, so that your VM is
addressable on Ethernet networks.
The NIC you added to the VM can follow one of two different models:
	
in the default Bridged mode each virtual NIC is backed on the host by a
tap device, (a software loopback device simulating an Ethernet NIC). This
tap device is added to a bridge, by default vmbr0 in Proxmox VE. In this mode, VMs
have direct access to the Ethernet LAN on which the host is located.

	
in the alternative NAT mode, each virtual NIC will only communicate with
the QEMU user networking stack, where a built-in router and DHCP server can
provide network access. This built-in DHCP will serve addresses in the private
10.0.2.0/24 range. The NAT mode is much slower than the bridged mode, and
should only be used for testing. This mode is only available via CLI or the API,
but not via the web UI.

You can also skip adding a network device when creating a VM by selecting No
network device.
You can overwrite the MTU setting for each VM network device. The option
mtu=1 represents a special case, in which the MTU value will be inherited
from the underlying bridge.
This option is only available for VirtIO network devices.
Multiqueue. If you are using the VirtIO driver, you can optionally activate the
Multiqueue option. This option allows the guest OS to process networking
packets using multiple virtual CPUs, providing an increase in the total number
of packets transferred.
When using the VirtIO driver with Proxmox VE, each NIC network queue is passed to the
host kernel, where the queue will be processed by a kernel thread spawned by the
vhost driver. With this option activated, it is possible to pass multiple
network queues to the host kernel for each NIC.
When using Multiqueue, it is recommended to set it to a value equal to the
number of vCPUs of your guest. Remember that the number of vCPUs is the number
of sockets times the number of cores configured for the VM. You also need to set
the number of multi-purpose channels on each VirtIO NIC in the VM with this
ethtool command:
ethtool -L ens1 combined X
where X is the number of the number of vCPUs of the VM.
To configure a Windows guest for Multiqueue install the
Redhat VirtIO Ethernet
Adapter drivers, then adapt the NIC’s configuration as follows. Open the
device manager, right click the NIC under "Network adapters", and select
"Properties". Then open the "Advanced" tab and select "Receive Side Scaling"
from the list on the left. Make sure it is set to "Enabled". Next, navigate to
"Maximum number of RSS Queues" in the list and set it to the number of vCPUs of
your VM. Once you verified that the settings are correct, click "OK" to confirm
them.
You should note that setting the Multiqueue parameter to a value greater
than one will increase the CPU load on the host and guest systems as the
traffic increases. We recommend to set this option only when the VM has to
process a great number of incoming connections, such as when the VM is running
as a router, reverse proxy or a busy HTTP server doing long polling.

10.2.8. Display

QEMU can virtualize a few types of VGA hardware. Some examples are:
	
std, the default, emulates a card with Bochs VBE extensions.

	
cirrus, this was once the default, it emulates a very old hardware module
with all its problems. This display type should only be used if really
necessary [42], for example, if using Windows XP or
earlier

	
vmware, is a VMWare SVGA-II compatible adapter.

	
qxl, is the QXL paravirtualized graphics card. Selecting this also
enables SPICE (a remote viewer protocol) for the
VM.

	
virtio-gl, often named VirGL is a virtual 3D GPU for use inside VMs that
 can offload workloads to the host GPU without requiring special (expensive)
 models and drivers and neither binding the host GPU completely, allowing
 reuse between multiple guests and or the host.

Note
VirGL support needs some extra libraries that aren’t installed by
default due to being relatively big and also not available as open source for
all GPU models/vendors. For most setups you’ll just need to do:
apt install libgl1 libegl1

You can edit the amount of memory given to the virtual GPU, by setting
the memory option. This can enable higher resolutions inside the VM,
especially with SPICE/QXL.
As the memory is reserved by display device, selecting Multi-Monitor mode
for SPICE (such as qxl2 for dual monitors) has some implications:
	
Windows needs a device for each monitor, so if your ostype is some
version of Windows, Proxmox VE gives the VM an extra device per monitor.
Each device gets the specified amount of memory.

	
Linux VMs, can always enable more virtual monitors, but selecting
a Multi-Monitor mode multiplies the memory given to the device with
the number of monitors.

Selecting serialX as display type disables the VGA output, and redirects
the Web Console to the selected serial port. A configured display memory
setting will be ignored in that case.
VNC clipboard. You can enable the VNC clipboard by setting clipboard to vnc.
qm set <vmid> -vga <displaytype>,clipboard=vnc
In order to use the clipboard feature, you must first install the
SPICE guest tools. On Debian-based distributions, this can be achieved
by installing spice-vdagent. For other Operating Systems search for it
in the offical repositories or see: https://www.spice-space.org/download.html
Once you have installed the spice guest tools, you can use the VNC clipboard
function (e.g. in the noVNC console panel). However, if you’re using
SPICE, virtio or virgl, you’ll need to choose which clipboard to use.
This is because the default SPICE clipboard will be replaced by the
VNC clipboard, if clipboard is set to vnc.

10.2.9. USB Passthrough

There are two different types of USB passthrough devices:
	
Host USB passthrough

	
SPICE USB passthrough

Host USB passthrough works by giving a VM a USB device of the host.
This can either be done via the vendor- and product-id, or
via the host bus and port.
The vendor/product-id looks like this: 0123:abcd,
where 0123 is the id of the vendor, and abcd is the id
of the product, meaning two pieces of the same usb device
have the same id.
The bus/port looks like this: 1-2.3.4, where 1 is the bus
and 2.3.4 is the port path. This represents the physical
ports of your host (depending of the internal order of the
usb controllers).
If a device is present in a VM configuration when the VM starts up,
but the device is not present in the host, the VM can boot without problems.
As soon as the device/port is available in the host, it gets passed through.
Warning
Using this kind of USB passthrough means that you cannot move
a VM online to another host, since the hardware is only available
on the host the VM is currently residing.

The second type of passthrough is SPICE USB passthrough. If you add one or more
SPICE USB ports to your VM, you can dynamically pass a local USB device from
your SPICE client through to the VM. This can be useful to redirect an input
device or hardware dongle temporarily.
It is also possible to map devices on a cluster level, so that they can be
properly used with HA and hardware changes are detected and non root users
can configure them. See Resource Mapping
for details on that.

10.2.10. BIOS and UEFI

In order to properly emulate a computer, QEMU needs to use a firmware.
Which, on common PCs often known as BIOS or (U)EFI, is executed as one of the
first steps when booting a VM. It is responsible for doing basic hardware
initialization and for providing an interface to the firmware and hardware for
the operating system. By default QEMU uses SeaBIOS for this, which is an
open-source, x86 BIOS implementation. SeaBIOS is a good choice for most
standard setups.
Some operating systems (such as Windows 11) may require use of an UEFI
compatible implementation. In such cases, you must use OVMF instead,
which is an open-source UEFI implementation. [43]
There are other scenarios in which the SeaBIOS may not be the ideal firmware to
boot from, for example if you want to do VGA passthrough. [44]
If you want to use OVMF, there are several things to consider:
In order to save things like the boot order, there needs to be an EFI Disk.
This disk will be included in backups and snapshots, and there can only be one.
You can create such a disk with the following command:
qm set <vmid> -efidisk0 <storage>:1,format=<format>,efitype=4m,pre-enrolled-keys=1
Where <storage> is the storage where you want to have the disk, and
<format> is a format which the storage supports. Alternatively, you can
create such a disk through the web interface with Add → EFI Disk in the
hardware section of a VM.
The efitype option specifies which version of the OVMF firmware should be
used. For new VMs, this should always be 4m, as it supports Secure Boot and
has more space allocated to support future development (this is the default in
the GUI).
pre-enroll-keys specifies if the efidisk should come pre-loaded with
distribution-specific and Microsoft Standard Secure Boot keys. It also enables
Secure Boot by default (though it can still be disabled in the OVMF menu within
the VM).
Note
If you want to start using Secure Boot in an existing VM (that still uses
a 2m efidisk), you need to recreate the efidisk. To do so, delete the old one
(qm set <vmid> -delete efidisk0) and add a new one as described above. This
will reset any custom configurations you have made in the OVMF menu!

When using OVMF with a virtual display (without VGA passthrough),
you need to set the client resolution in the OVMF menu (which you can reach
with a press of the ESC button during boot), or you have to choose
SPICE as the display type.

10.2.11. Trusted Platform Module (TPM)

A Trusted Platform Module is a device which stores secret data - such as
encryption keys - securely and provides tamper-resistance functions for
validating system boot.
Certain operating systems (such as Windows 11) require such a device to be
attached to a machine (be it physical or virtual).
A TPM is added by specifying a tpmstate volume. This works similar to an
efidisk, in that it cannot be changed (only removed) once created. You can add
one via the following command:
qm set <vmid> -tpmstate0 <storage>:1,version=<version>
Where <storage> is the storage you want to put the state on, and <version>
is either v1.2 or v2.0. You can also add one via the web interface, by
choosing Add → TPM State in the hardware section of a VM.
The v2.0 TPM spec is newer and better supported, so unless you have a specific
implementation that requires a v1.2 TPM, it should be preferred.
Note
Compared to a physical TPM, an emulated one does not provide any real
security benefits. The point of a TPM is that the data on it cannot be modified
easily, except via commands specified as part of the TPM spec. Since with an
emulated device the data storage happens on a regular volume, it can potentially
be edited by anyone with access to it.

10.2.12. Inter-VM shared memory

You can add an Inter-VM shared memory device (ivshmem), which allows one to
share memory between the host and a guest, or also between multiple guests.
To add such a device, you can use qm:
qm set <vmid> -ivshmem size=32,name=foo
Where the size is in MiB. The file will be located under
/dev/shm/pve-shm-$name (the default name is the vmid).
Note
Currently the device will get deleted as soon as any VM using it got
shutdown or stopped. Open connections will still persist, but new connections
to the exact same device cannot be made anymore.

A use case for such a device is the Looking Glass
[45] project, which enables high
performance, low-latency display mirroring between host and guest.

10.2.13. Audio Device

To add an audio device run the following command:
qm set <vmid> -audio0 device=<device>
Supported audio devices are:
	
ich9-intel-hda: Intel HD Audio Controller, emulates ICH9

	
intel-hda: Intel HD Audio Controller, emulates ICH6

	
AC97: Audio Codec '97, useful for older operating systems like Windows XP

There are two backends available:
	
spice

	
none

The spice backend can be used in combination with SPICE while
the none backend can be useful if an audio device is needed in the VM for some
software to work. To use the physical audio device of the host use device
passthrough (see PCI Passthrough and
USB Passthrough). Remote protocols like Microsoft’s RDP
have options to play sound.

10.2.14. VirtIO RNG

A RNG (Random Number Generator) is a device providing entropy (randomness) to
a system. A virtual hardware-RNG can be used to provide such entropy from the
host system to a guest VM. This helps to avoid entropy starvation problems in
the guest (a situation where not enough entropy is available and the system may
slow down or run into problems), especially during the guests boot process.
To add a VirtIO-based emulated RNG, run the following command:
qm set <vmid> -rng0 source=<source>[,max_bytes=X,period=Y]
source specifies where entropy is read from on the host and has to be one of
the following:
	
/dev/urandom: Non-blocking kernel entropy pool (preferred)

	
/dev/random: Blocking kernel pool (not recommended, can lead to entropy
 starvation on the host system)

	
/dev/hwrng: To pass through a hardware RNG attached to the host (if multiple
 are available, the one selected in
 /sys/devices/virtual/misc/hw_random/rng_current will be used)

A limit can be specified via the max_bytes and period parameters, they are
read as max_bytes per period in milliseconds. However, it does not represent
a linear relationship: 1024B/1000ms would mean that up to 1 KiB of data becomes
available on a 1 second timer, not that 1 KiB is streamed to the guest over the
course of one second. Reducing the period can thus be used to inject entropy
into the guest at a faster rate.
By default, the limit is set to 1024 bytes per 1000 ms (1 KiB/s). It is
recommended to always use a limiter to avoid guests using too many host
resources. If desired, a value of 0 for max_bytes can be used to disable
all limits.

10.2.15. Device Boot Order

QEMU can tell the guest which devices it should boot from, and in which order.
This can be specified in the config via the boot property, for example:
boot: order=scsi0;net0;hostpci0
[image: screenshot/gui-qemu-edit-bootorder.png]
This way, the guest would first attempt to boot from the disk scsi0, if that
fails, it would go on to attempt network boot from net0, and in case that
fails too, finally attempt to boot from a passed through PCIe device (seen as
disk in case of NVMe, otherwise tries to launch into an option ROM).
On the GUI you can use a drag-and-drop editor to specify the boot order, and use
the checkbox to enable or disable certain devices for booting altogether.
Note
If your guest uses multiple disks to boot the OS or load the bootloader,
all of them must be marked as bootable (that is, they must have the checkbox
enabled or appear in the list in the config) for the guest to be able to boot.
This is because recent SeaBIOS and OVMF versions only initialize disks if they
are marked bootable.

In any case, even devices not appearing in the list or having the checkmark
disabled will still be available to the guest, once it’s operating system has
booted and initialized them. The bootable flag only affects the guest BIOS and
bootloader.

10.2.16. Automatic Start and Shutdown of Virtual Machines

After creating your VMs, you probably want them to start automatically
when the host system boots. For this you need to select the option Start at
boot from the Options Tab of your VM in the web interface, or set it with
the following command:
qm set <vmid> -onboot 1
Start and Shutdown Order.

[image: screenshot/gui-qemu-edit-start-order.png]
In some case you want to be able to fine tune the boot order of your
VMs, for instance if one of your VM is providing firewalling or DHCP
to other guest systems. For this you can use the following
parameters:
	
Start/Shutdown order: Defines the start order priority. For example, set it
to 1 if you want the VM to be the first to be started. (We use the reverse
startup order for shutdown, so a machine with a start order of 1 would be the
last to be shut down). If multiple VMs have the same order defined on a host,
they will additionally be ordered by VMID in ascending order.

	
Startup delay: Defines the interval between this VM start and subsequent
VMs starts. For example, set it to 240 if you want to wait 240 seconds before
starting other VMs.

	
Shutdown timeout: Defines the duration in seconds Proxmox VE should wait
for the VM to be offline after issuing a shutdown command. By default this
value is set to 180, which means that Proxmox VE will issue a shutdown request and
wait 180 seconds for the machine to be offline. If the machine is still online
after the timeout it will be stopped forcefully.

Note
VMs managed by the HA stack do not follow the start on boot and
boot order options currently. Those VMs will be skipped by the startup and
shutdown algorithm as the HA manager itself ensures that VMs get started and
stopped.

Please note that machines without a Start/Shutdown order parameter will always
start after those where the parameter is set. Further, this parameter can only
be enforced between virtual machines running on the same host, not
cluster-wide.
If you require a delay between the host boot and the booting of the first VM,
see the section on Proxmox VE Node Management.

10.2.17. QEMU Guest Agent

The QEMU Guest Agent is a service which runs inside the VM, providing a
communication channel between the host and the guest. It is used to exchange
information and allows the host to issue commands to the guest.
For example, the IP addresses in the VM summary panel are fetched via the guest
agent.
Or when starting a backup, the guest is told via the guest agent to sync
outstanding writes via the fs-freeze and fs-thaw commands.
For the guest agent to work properly the following steps must be taken:
	
install the agent in the guest and make sure it is running

	
enable the communication via the agent in Proxmox VE

Install Guest Agent

For most Linux distributions, the guest agent is available. The package is
usually named qemu-guest-agent.
For Windows, it can be installed from the
Fedora
VirtIO driver ISO.

Enable Guest Agent Communication

Communication from Proxmox VE with the guest agent can be enabled in the VM’s
Options panel. A fresh start of the VM is necessary for the changes to take
effect.

Automatic TRIM Using QGA

It is possible to enable the Run guest-trim option. With this enabled,
Proxmox VE will issue a trim command to the guest after the following
operations that have the potential to write out zeros to the storage:
	
moving a disk to another storage

	
live migrating a VM to another node with local storage

On a thin provisioned storage, this can help to free up unused space.
Note
There is a caveat with ext4 on Linux, because it uses an in-memory
optimization to avoid issuing duplicate TRIM requests. Since the guest doesn’t
know about the change in the underlying storage, only the first guest-trim will
run as expected. Subsequent ones, until the next reboot, will only consider
parts of the filesystem that changed since then.

Filesystem Freeze & Thaw on Backup

By default, guest filesystems are synced via the fs-freeze QEMU Guest Agent
Command when a backup is performed, to provide consistency.
On Windows guests, some applications might handle consistent backups themselves
by hooking into the Windows VSS (Volume Shadow Copy Service) layer, a
fs-freeze then might interfere with that. For example, it has been observed
that calling fs-freeze with some SQL Servers triggers VSS to call the SQL
Writer VSS module in a mode that breaks the SQL Server backup chain for
differential backups.
For such setups you can configure Proxmox VE to not issue a freeze-and-thaw cycle on
backup by setting the freeze-fs-on-backup QGA option to 0. This can also be
done via the GUI with the Freeze/thaw guest filesystems on backup for
consistency option.
Important
Disabling this option can potentially lead to backups with inconsistent
filesystems and should therefore only be disabled if you know what you are
doing.

Troubleshooting

VM does not shut down. Make sure the guest agent is installed and running.
Once the guest agent is enabled, Proxmox VE will send power commands like
shutdown via the guest agent. If the guest agent is not running, commands
cannot get executed properly and the shutdown command will run into a timeout.

10.2.18. SPICE Enhancements

SPICE Enhancements are optional features that can improve the remote viewer
experience.
To enable them via the GUI go to the Options panel of the virtual machine. Run
the following command to enable them via the CLI:
qm set <vmid> -spice_enhancements foldersharing=1,videostreaming=all
Note
To use these features the Display of the virtual machine
must be set to SPICE (qxl).

Folder Sharing

Share a local folder with the guest. The spice-webdavd daemon needs to be
installed in the guest. It makes the shared folder available through a local
WebDAV server located at http://localhost:9843.
For Windows guests the installer for the Spice WebDAV daemon can be downloaded
from the
official SPICE website.
Most Linux distributions have a package called spice-webdavd that can be
installed.
To share a folder in Virt-Viewer (Remote Viewer) go to File → Preferences.
Select the folder to share and then enable the checkbox.
Note
Folder sharing currently only works in the Linux version of Virt-Viewer.

Caution
Experimental! Currently this feature does not work reliably.

Video Streaming

Fast refreshing areas are encoded into a video stream. Two options exist:
	
all: Any fast refreshing area will be encoded into a video stream.

	
filter: Additional filters are used to decide if video streaming should be
 used (currently only small window surfaces are skipped).

A general recommendation if video streaming should be enabled and which option
to choose from cannot be given. Your mileage may vary depending on the specific
circumstances.

Troubleshooting

Shared folder does not show up. Make sure the WebDAV service is enabled and running in the guest. On Windows it
is called Spice webdav proxy. In Linux the name is spice-webdavd but can be
different depending on the distribution.
If the service is running, check the WebDAV server by opening
http://localhost:9843 in a browser in the guest.
It can help to restart the SPICE session.

[34] See this benchmark for details
 https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf

[35] TRIM, UNMAP, and discard
https://en.wikipedia.org/wiki/Trim_%28computing%29

[36] Meltdown Attack https://meltdownattack.com/

[37] spectre-meltdown-checker https://meltdown.ovh/

[38] PCID is now a critical performance/security feature on x86
https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU

[39] https://en.wikipedia.org/wiki/Non-uniform_memory_access

[40] if the command
numactl --hardware | grep available returns more than one node, then your host
system has a NUMA architecture

[41] A good explanation of the inner workings of the balloon driver can be found here https://rwmj.wordpress.com/2010/07/17/virtio-balloon/

[42] https://www.kraxel.org/blog/2014/10/qemu-using-cirrus-considered-harmful/
qemu: using cirrus considered harmful

[43] See the OVMF Project https://github.com/tianocore/tianocore.github.io/wiki/OVMF

[44] Alex
Williamson has a good blog entry about this
https://vfio.blogspot.co.at/2014/08/primary-graphics-assignment-without-vga.html

[45] Looking Glass: https://looking-glass.io/

10.3. Migration

[image: screenshot/gui-qemu-migrate.png]
If you have a cluster, you can migrate your VM to another host with
qm migrate <vmid> <target>
There are generally two mechanisms for this
	
Online Migration (aka Live Migration)

	
Offline Migration

10.3.1. Online Migration

If your VM is running and no locally bound resources are configured (such as
devices that are passed through), you can initiate a live migration with the --online
flag in the qm migration command evocation. The web interface defaults to
live migration when the VM is running.
How it works

Online migration first starts a new QEMU process on the target host with the
incoming flag, which performs only basic initialization with the guest vCPUs
still paused and then waits for the guest memory and device state data streams
of the source Virtual Machine.
All other resources, such as disks, are either shared or got already sent
before runtime state migration of the VMs begins; so only the memory content
and device state remain to be transferred.
Once this connection is established, the source begins asynchronously sending
the memory content to the target. If the guest memory on the source changes,
those sections are marked dirty and another pass is made to send the guest
memory data.
This loop is repeated until the data difference between running source VM
and incoming target VM is small enough to be sent in a few milliseconds,
because then the source VM can be paused completely, without a user or program
noticing the pause, so that the remaining data can be sent to the target, and
then unpause the targets VM’s CPU to make it the new running VM in well under a
second.

Requirements

For Live Migration to work, there are some things required:
	
The VM has no local resources that cannot be migrated. For example,
 PCI or USB devices that are passed through currently block live-migration.
 Local Disks, on the other hand, can be migrated by sending them to the target
 just fine.

	
The hosts are located in the same Proxmox VE cluster.

	
The hosts have a working (and reliable) network connection between them.

	
The target host must have the same, or higher versions of the
 Proxmox VE packages. Although it can sometimes work the other way around, this
 cannot be guaranteed.

	
The hosts have CPUs from the same vendor with similar capabilities. Different
 vendor might work depending on the actual models and VMs CPU type
 configured, but it cannot be guaranteed - so please test before deploying
 such a setup in production.

10.3.2. Offline Migration

If you have local resources, you can still migrate your VMs offline as long as
all disk are on storage defined on both hosts.
Migration then copies the disks to the target host over the network, as with
online migration. Note that any hardware passthrough configuration may need to
be adapted to the device location on the target host.

10.4. Copies and Clones

[image: screenshot/gui-qemu-full-clone.png]
VM installation is usually done using an installation media (CD-ROM)
from the operating system vendor. Depending on the OS, this can be a
time consuming task one might want to avoid.
An easy way to deploy many VMs of the same type is to copy an existing
VM. We use the term clone for such copies, and distinguish between
linked and full clones.
	
Full Clone

	
The result of such copy is an independent VM. The
new VM does not share any storage resources with the original.

It is possible to select a Target Storage, so one can use this to
migrate a VM to a totally different storage. You can also change the
disk image Format if the storage driver supports several formats.
Note
A full clone needs to read and copy all VM image data. This is
usually much slower than creating a linked clone.

Some storage types allows to copy a specific Snapshot, which
defaults to the current VM data. This also means that the final copy
never includes any additional snapshots from the original VM.

	
Linked Clone

	
Modern storage drivers support a way to generate fast linked
clones. Such a clone is a writable copy whose initial contents are the
same as the original data. Creating a linked clone is nearly
instantaneous, and initially consumes no additional space.

They are called linked because the new image still refers to the
original. Unmodified data blocks are read from the original image, but
modification are written (and afterwards read) from a new
location. This technique is called Copy-on-write.
This requires that the original volume is read-only. With Proxmox VE one
can convert any VM into a read-only Template). Such
templates can later be used to create linked clones efficiently.
Note
You cannot delete an original template while linked clones
exist.

It is not possible to change the Target storage for linked clones,
because this is a storage internal feature.

The Target node option allows you to create the new VM on a
different node. The only restriction is that the VM is on shared
storage, and that storage is also available on the target node.
To avoid resource conflicts, all network interface MAC addresses get
randomized, and we generate a new UUID for the VM BIOS (smbios1)
setting.

10.5. Virtual Machine Templates

One can convert a VM into a Template. Such templates are read-only,
and you can use them to create linked clones.
Note
It is not possible to start templates, because this would modify
the disk images. If you want to change the template, create a linked
clone and modify that.

10.6. VM Generation ID

Proxmox VE supports Virtual Machine Generation ID (vmgenid) [46]
for virtual machines.
This can be used by the guest operating system to detect any event resulting
in a time shift event, for example, restoring a backup or a snapshot rollback.
When creating new VMs, a vmgenid will be automatically generated and saved
in its configuration file.
To create and add a vmgenid to an already existing VM one can pass the
special value ‘1’ to let Proxmox VE autogenerate one or manually set the UUID
[47] by using it as value, for
example:
qm set VMID -vmgenid 1
qm set VMID -vmgenid 00000000-0000-0000-0000-000000000000
Note
The initial addition of a vmgenid device to an existing VM, may result
in the same effects as a change on snapshot rollback, backup restore, etc., has
as the VM can interpret this as generation change.

In the rare case the vmgenid mechanism is not wanted one can pass ‘0’ for
its value on VM creation, or retroactively delete the property in the
configuration with:
qm set VMID -delete vmgenid
The most prominent use case for vmgenid are newer Microsoft Windows
operating systems, which use it to avoid problems in time sensitive or
replicate services (such as databases or domain controller
[48])
on snapshot rollback, backup restore or a whole VM clone operation.

[46] Official
vmgenid Specification
https://docs.microsoft.com/en-us/windows/desktop/hyperv_v2/virtual-machine-generation-identifier

[47] Online GUID generator http://guid.one/

[48] https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/virtualized-domain-controller-architecture

10.7. Importing Virtual Machines

Importing existing virtual machines from foreign hypervisors or other Proxmox VE
clusters can be achieved through various methods, the most common ones are:
	
Using the native import wizard, which utilizes the import content type, such
 as provided by the ESXi special storage.

	
Performing a backup on the source and then restoring on the target. This
 method works best when migrating from another Proxmox VE instance.

	
using the OVF-specific import command of the qm command-line tool.

If you import VMs to Proxmox VE from other hypervisors, it’s recommended to
familiarize yourself with the
concepts of Proxmox VE.
10.7.1. Import Wizard

[image: screenshot/gui-import-wizard-general.png]
Proxmox VE provides an integrated VM importer using the storage plugin system for
native integration into the API and web-based user interface. You can use this
to import the VM as a whole, with most of its config mapped to Proxmox VE’s config
model and reduced downtime.
Note
The import wizard was added during the Proxmox VE 8.2 development cycle and is
in tech preview state. While it’s already promising and working stable, it’s
still under active development, focusing on adding other import-sources, like
for example OVF/OVA files, in the future.

To use the import wizard you have to first set up a new storage for an import
source, you can do so on the web-interface under Datacenter → Storage → Add.
Then you can select the new storage in the resource tree and use the Virtual
Guests content tab to see all available guests that can be imported.
[image: screenshot/gui-import-wizard-advanced.png]
Select one and use the Import button (or double-click) to open the import
wizard. You can modify a subset of the available options here and then start the
import. Please note that you can do more advanced modifications after the import
finished.
Tip
The import wizard is currently (2024-03) available for ESXi and has been
tested with ESXi versions 6.5 through 8.0. Note that guests using vSAN storage
cannot be directly imported directly; their disks must first be moved to another
storage. While it is possible to use a vCenter as the import source, performance
is dramatically degraded (5 to 10 times slower).

For a step-by-step guide and tips for how to adapt the virtual guest to the new
hyper-visor see our
migrate to Proxmox VE
wiki article.

10.7.2. Import OVF/OVA Through CLI

A VM export from a foreign hypervisor takes usually the form of one or more disk
 images, with a configuration file describing the settings of the VM (RAM,
 number of cores).
The disk images can be in the vmdk format, if the disks come from
VMware or VirtualBox, or qcow2 if the disks come from a KVM hypervisor.
The most popular configuration format for VM exports is the OVF standard, but in
practice interoperation is limited because many settings are not implemented in
the standard itself, and hypervisors export the supplementary information
in non-standard extensions.
Besides the problem of format, importing disk images from other hypervisors
may fail if the emulated hardware changes too much from one hypervisor to
another. Windows VMs are particularly concerned by this, as the OS is very
picky about any changes of hardware. This problem may be solved by
installing the MergeIDE.zip utility available from the Internet before exporting
and choosing a hard disk type of IDE before booting the imported Windows VM.
Finally there is the question of paravirtualized drivers, which improve the
speed of the emulated system and are specific to the hypervisor.
GNU/Linux and other free Unix OSes have all the necessary drivers installed by
default and you can switch to the paravirtualized drivers right after importing
the VM. For Windows VMs, you need to install the Windows paravirtualized
drivers by yourself.
GNU/Linux and other free Unix can usually be imported without hassle. Note
that we cannot guarantee a successful import/export of Windows VMs in all
cases due to the problems above.
Step-by-step example of a Windows OVF import

Microsoft provides
Virtual Machines downloads
 to get started with Windows development.We are going to use one of these
to demonstrate the OVF import feature.
Download the Virtual Machine zip

After getting informed about the user agreement, choose the Windows 10
Enterprise (Evaluation - Build) for the VMware platform, and download the zip.

Extract the disk image from the zip

Using the unzip utility or any archiver of your choice, unpack the zip,
and copy via ssh/scp the ovf and vmdk files to your Proxmox VE host.

Import the Virtual Machine

This will create a new virtual machine, using cores, memory and
VM name as read from the OVF manifest, and import the disks to the local-lvm
 storage. You have to configure the network manually.
qm importovf 999 WinDev1709Eval.ovf local-lvm
The VM is ready to be started.

Adding an external disk image to a Virtual Machine

You can also add an existing disk image to a VM, either coming from a
foreign hypervisor, or one that you created yourself.
Suppose you created a Debian/Ubuntu disk image with the vmdebootstrap tool:
vmdebootstrap --verbose \
 --size 10GiB --serial-console \
 --grub --no-extlinux \
 --package openssh-server \
 --package avahi-daemon \
 --package qemu-guest-agent \
 --hostname vm600 --enable-dhcp \
 --customize=./copy_pub_ssh.sh \
 --sparse --image vm600.raw
You can now create a new target VM, importing the image to the storage pvedir
and attaching it to the VM’s SCSI controller:
qm create 600 --net0 virtio,bridge=vmbr0 --name vm600 --serial0 socket \
 --boot order=scsi0 --scsihw virtio-scsi-pci --ostype l26 \
 --scsi0 pvedir:0,import-from=/path/to/dir/vm600.raw
The VM is ready to be started.

10.8. Cloud-Init Support

Cloud-Init is the de facto
multi-distribution package that handles early initialization of a
virtual machine instance. Using Cloud-Init, configuration of network
devices and ssh keys on the hypervisor side is possible. When the VM
starts for the first time, the Cloud-Init software inside the VM will
apply those settings.
Many Linux distributions provide ready-to-use Cloud-Init images, mostly
designed for OpenStack. These images will also work with Proxmox VE. While
it may seem convenient to get such ready-to-use images, we usually
recommended to prepare the images by yourself. The advantage is that you
will know exactly what you have installed, and this helps you later to
easily customize the image for your needs.
Once you have created such a Cloud-Init image we recommend to convert it
into a VM template. From a VM template you can quickly create linked
clones, so this is a fast method to roll out new VM instances. You just
need to configure the network (and maybe the ssh keys) before you start
the new VM.
We recommend using SSH key-based authentication to login to the VMs
provisioned by Cloud-Init. It is also possible to set a password, but
this is not as safe as using SSH key-based authentication because Proxmox VE
needs to store an encrypted version of that password inside the
Cloud-Init data.
Proxmox VE generates an ISO image to pass the Cloud-Init data to the VM. For
that purpose, all Cloud-Init VMs need to have an assigned CD-ROM drive.
Usually, a serial console should be added and used as a display. Many Cloud-Init
images rely on this, it is a requirement for OpenStack. However, other images
might have problems with this configuration. Switch back to the default display
configuration if using a serial console doesn’t work.
10.8.1. Preparing Cloud-Init Templates

The first step is to prepare your VM. Basically you can use any VM.
Simply install the Cloud-Init packages inside the VM that you want to
prepare. On Debian/Ubuntu based systems this is as simple as:
apt-get install cloud-init
Warning
This command is not intended to be executed on the Proxmox VE host, but
only inside the VM.

Already many distributions provide ready-to-use Cloud-Init images (provided
as .qcow2 files), so alternatively you can simply download and
import such images. For the following example, we will use the cloud
image provided by Ubuntu at https://cloud-images.ubuntu.com.
download the image
wget https://cloud-images.ubuntu.com/bionic/current/bionic-server-cloudimg-amd64.img

create a new VM with VirtIO SCSI controller
qm create 9000 --memory 2048 --net0 virtio,bridge=vmbr0 --scsihw virtio-scsi-pci

import the downloaded disk to the local-lvm storage, attaching it as a SCSI drive
qm set 9000 --scsi0 local-lvm:0,import-from=/path/to/bionic-server-cloudimg-amd64.img
Note
Ubuntu Cloud-Init images require the virtio-scsi-pci
controller type for SCSI drives.

Add Cloud-Init CD-ROM drive.

[image: screenshot/gui-cloudinit-hardware.png]
The next step is to configure a CD-ROM drive, which will be used to pass
the Cloud-Init data to the VM.
qm set 9000 --ide2 local-lvm:cloudinit
To be able to boot directly from the Cloud-Init image, set the boot parameter
to order=scsi0 to restrict BIOS to boot from this disk only. This will speed
up booting, because VM BIOS skips the testing for a bootable CD-ROM.
qm set 9000 --boot order=scsi0
For many Cloud-Init images, it is required to configure a serial console and use
it as a display. If the configuration doesn’t work for a given image however,
switch back to the default display instead.
qm set 9000 --serial0 socket --vga serial0
In a last step, it is helpful to convert the VM into a template. From
this template you can then quickly create linked clones.
The deployment from VM templates is much faster than creating a full
clone (copy).
qm template 9000

10.8.2. Deploying Cloud-Init Templates

[image: screenshot/gui-cloudinit-config.png]
You can easily deploy such a template by cloning:
qm clone 9000 123 --name ubuntu2
Then configure the SSH public key used for authentication, and configure
the IP setup:
qm set 123 --sshkey ~/.ssh/id_rsa.pub
qm set 123 --ipconfig0 ip=10.0.10.123/24,gw=10.0.10.1
You can also configure all the Cloud-Init options using a single command
only. We have simply split the above example to separate the
commands for reducing the line length. Also make sure to adopt the IP
setup for your specific environment.

10.8.3. Custom Cloud-Init Configuration

The Cloud-Init integration also allows custom config files to be used instead
of the automatically generated configs. This is done via the cicustom
option on the command line:
qm set 9000 --cicustom "user=<volume>,network=<volume>,meta=<volume>"
The custom config files have to be on a storage that supports snippets and have
to be available on all nodes the VM is going to be migrated to. Otherwise the
VM won’t be able to start.
For example:
qm set 9000 --cicustom "user=local:snippets/userconfig.yaml"
There are three kinds of configs for Cloud-Init. The first one is the user
config as seen in the example above. The second is the network config and
the third the meta config. They can all be specified together or mixed
and matched however needed.
The automatically generated config will be used for any that don’t have a
custom config file specified.
The generated config can be dumped to serve as a base for custom configs:
qm cloudinit dump 9000 user
The same command exists for network and meta.

10.8.4. Cloud-Init specific Options

	
cicustom: [meta=<volume>] [,network=<volume>] [,user=<volume>] [,vendor=<volume>]

	
Specify custom files to replace the automatically generated ones at start.

	
meta=<volume>

	
Specify a custom file containing all meta data passed to the VM via"
 ." cloud-init. This is provider specific meaning configdrive2 and nocloud differ.

	
network=<volume>

	
To pass a custom file containing all network data to the VM via cloud-init.

	
user=<volume>

	
To pass a custom file containing all user data to the VM via cloud-init.

	
vendor=<volume>

	
To pass a custom file containing all vendor data to the VM via cloud-init.

	
cipassword: <string>

	
Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.

	
citype: <configdrive2 | nocloud | opennebula>

	
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.

	
ciupgrade: <boolean> (default = 1)

	
do an automatic package upgrade after the first boot.

	
ciuser: <string>

	
User name to change ssh keys and password for instead of the image’s configured default user.

	
ipconfig[n]: [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]

	
Specify IP addresses and gateways for the corresponding interface.

IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit
gateway should be provided.
For IPv6 the special string auto can be used to use stateless autoconfiguration. This requires
cloud-init 19.4 or newer.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using
dhcp on IPv4.
	
gw=<GatewayIPv4>

	
Default gateway for IPv4 traffic.

Note
Requires option(s): ip

	
gw6=<GatewayIPv6>

	
Default gateway for IPv6 traffic.

Note
Requires option(s): ip6

	
ip=<IPv4Format/CIDR> (default = dhcp)

	
IPv4 address in CIDR format.

	
ip6=<IPv6Format/CIDR> (default = dhcp)

	
IPv6 address in CIDR format.

	
nameserver: <string>

	
Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
searchdomain: <string>

	
Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
sshkeys: <string>

	
Setup public SSH keys (one key per line, OpenSSH format).

10.9. PCI(e) Passthrough

PCI(e) passthrough is a mechanism to give a virtual machine control over
a PCI device from the host. This can have some advantages over using
virtualized hardware, for example lower latency, higher performance, or more
features (e.g., offloading).
But, if you pass through a device to a virtual machine, you cannot use that
device anymore on the host or in any other VM.
Note that, while PCI passthrough is available for i440fx and q35 machines, PCIe
passthrough is only available on q35 machines. This does not mean that
PCIe capable devices that are passed through as PCI devices will only run at
PCI speeds. Passing through devices as PCIe just sets a flag for the guest to
tell it that the device is a PCIe device instead of a "really fast legacy PCI
device". Some guest applications benefit from this.
10.9.1. General Requirements

Since passthrough is performed on real hardware, it needs to fulfill some
requirements. A brief overview of these requirements is given below, for more
information on specific devices, see
PCI Passthrough Examples.
Hardware

Your hardware needs to support IOMMU (I/O Memory Management
Unit) interrupt remapping, this includes the CPU and the motherboard.
Generally, Intel systems with VT-d and AMD systems with AMD-Vi support this.
But it is not guaranteed that everything will work out of the box, due
to bad hardware implementation and missing or low quality drivers.
Further, server grade hardware has often better support than consumer grade
hardware, but even then, many modern system can support this.
Please refer to your hardware vendor to check if they support this feature
under Linux for your specific setup.

Determining PCI Card Address

The easiest way is to use the GUI to add a device of type "Host PCI" in the VM’s
hardware tab. Alternatively, you can use the command line.
You can locate your card using
 lspci

Configuration

Once you ensured that your hardware supports passthrough, you will need to do
some configuration to enable PCI(e) passthrough.
IOMMU. First, you will have to enable IOMMU support in your BIOS/UEFI. Usually the
corresponding setting is called IOMMU or VT-d, but you should find the exact
option name in the manual of your motherboard.
For Intel CPUs, you also need to enable the IOMMU on the
kernel command line kernels by adding:
 intel_iommu=on
For AMD CPUs it should be enabled automatically.
IOMMU Passthrough Mode. If your hardware supports IOMMU passthrough mode, enabling this mode might
increase performance.
This is because VMs then bypass the (default) DMA translation normally
performed by the hyper-visor and instead pass DMA requests directly to the
hardware IOMMU. To enable these options, add:
 iommu=pt
to the kernel commandline.
Kernel Modules. You have to make sure the following modules are loaded. This can be achieved by
adding them to ‘/etc/modules’. In kernels newer than 6.2 (Proxmox VE 8 and onward)
the vfio_virqfd module is part of the vfio module, therefore loading
vfio_virqfd in Proxmox VE 8 and newer is not necessary.
 vfio
 vfio_iommu_type1
 vfio_pci
 vfio_virqfd #not needed if on kernel 6.2 or newer
After changing anything modules related, you need to refresh your
initramfs. On Proxmox VE this can be done by executing:
update-initramfs -u -k all
To check if the modules are being loaded, the output of
lsmod | grep vfio
should include the four modules from above.
Finish Configuration. Finally reboot to bring the changes into effect and check that it is indeed
enabled.
dmesg | grep -e DMAR -e IOMMU -e AMD-Vi
should display that IOMMU, Directed I/O or Interrupt Remapping is
enabled, depending on hardware and kernel the exact message can vary.
For notes on how to troubleshoot or verify if IOMMU is working as intended, please
see the Verifying IOMMU Parameters
section in our wiki.
It is also important that the device(s) you want to pass through
are in a separate IOMMU group. This can be checked with a call to the Proxmox VE
API:
pvesh get /nodes/{nodename}/hardware/pci --pci-class-blacklist ""
It is okay if the device is in an IOMMU group together with its functions
(e.g. a GPU with the HDMI Audio device) or with its root port or PCI(e) bridge.
PCI(e) slots
Some platforms handle their physical PCI(e) slots differently. So, sometimes
it can help to put the card in a another PCI(e) slot, if you do not get the
desired IOMMU group separation.

Unsafe interrupts
For some platforms, it may be necessary to allow unsafe interrupts.
For this add the following line in a file ending with ‘.conf’ file in
/etc/modprobe.d/:
 options vfio_iommu_type1 allow_unsafe_interrupts=1
Please be aware that this option can make your system unstable.

GPU Passthrough Notes

It is not possible to display the frame buffer of the GPU via NoVNC or SPICE on
the Proxmox VE web interface.
When passing through a whole GPU or a vGPU and graphic output is wanted, one
has to either physically connect a monitor to the card, or configure a remote
desktop software (for example, VNC or RDP) inside the guest.
If you want to use the GPU as a hardware accelerator, for example, for
programs using OpenCL or CUDA, this is not required.

10.9.2. Host Device Passthrough

The most used variant of PCI(e) passthrough is to pass through a whole
PCI(e) card, for example a GPU or a network card.
Host Configuration

Proxmox VE tries to automatically make the PCI(e) device unavailable for the host.
However, if this doesn’t work, there are two things that can be done:
	
pass the device IDs to the options of the vfio-pci modules by adding

 options vfio-pci ids=1234:5678,4321:8765
to a .conf file in /etc/modprobe.d/ where 1234:5678 and 4321:8765 are
the vendor and device IDs obtained by:
lspci -nn

	
blacklist the driver on the host completely, ensuring that it is free to bind
for passthrough, with

 blacklist DRIVERNAME
in a .conf file in /etc/modprobe.d/.
To find the drivername, execute
lspci -k
for example:
lspci -k | grep -A 3 "VGA"
will output something similar to
01:00.0 VGA compatible controller: NVIDIA Corporation GP108 [GeForce GT 1030] (rev a1)
 Subsystem: Micro-Star International Co., Ltd. [MSI] GP108 [GeForce GT 1030]
 Kernel driver in use: <some-module>
 Kernel modules: <some-module>
Now we can blacklist the drivers by writing them into a .conf file:
echo "blacklist <some-module>" >> /etc/modprobe.d/blacklist.conf

For both methods you need to
update the initramfs again and
reboot after that.
Should this not work, you might need to set a soft dependency to load the gpu
modules before loading vfio-pci. This can be done with the softdep flag, see
also the manpages on modprobe.d for more information.
For example, if you are using drivers named <some-module>:
echo "softdep <some-module> pre: vfio-pci" >> /etc/modprobe.d/<some-module>.conf
Verify Configuration. To check if your changes were successful, you can use
lspci -nnk
and check your device entry. If it says
Kernel driver in use: vfio-pci
or the in use line is missing entirely, the device is ready to be used for
passthrough.

VM Configuration

When passing through a GPU, the best compatibility is reached when using
q35 as machine type, OVMF (UEFI for VMs) instead of SeaBIOS and PCIe
instead of PCI. Note that if you want to use OVMF for GPU passthrough, the
GPU needs to have an UEFI capable ROM, otherwise use SeaBIOS instead. To check if
the ROM is UEFI capable, see the
PCI Passthrough Examples
wiki.
Furthermore, using OVMF, disabling vga arbitration may be possible, reducing the
amount of legacy code needed to be run during boot. To disable vga arbitration:
 echo "options vfio-pci ids=<vendor-id>,<device-id> disable_vga=1" > /etc/modprobe.d/vfio.conf
replacing the <vendor-id> and <device-id> with the ones obtained from:
lspci -nn
PCI devices can be added in the web interface in the hardware section of the VM.
Alternatively, you can use the command line; set the hostpciX option in the VM
configuration, for example by executing:
qm set VMID -hostpci0 00:02.0
or by adding a line to the VM configuration file:
 hostpci0: 00:02.0
If your device has multiple functions (e.g., ‘00:02.0’ and ‘00:02.1’),
you can pass them through all together with the shortened syntax ``00:02`.
This is equivalent with checking the ``All Functions` checkbox in the
web interface.
There are some options to which may be necessary, depending on the device
and guest OS:
	
x-vga=on|off marks the PCI(e) device as the primary GPU of the VM.
With this enabled the vga configuration option will be ignored.

	
pcie=on|off tells Proxmox VE to use a PCIe or PCI port. Some guests/device
combination require PCIe rather than PCI. PCIe is only available for q35
machine types.

	
rombar=on|off makes the firmware ROM visible for the guest. Default is on.
Some PCI(e) devices need this disabled.

	
romfile=<path>, is an optional path to a ROM file for the device to use.
This is a relative path under /usr/share/kvm/.

Example. An example of PCIe passthrough with a GPU set to primary:
qm set VMID -hostpci0 02:00,pcie=on,x-vga=on
PCI ID overrides. You can override the PCI vendor ID, device ID, and subsystem IDs that will be
seen by the guest. This is useful if your device is a variant with an ID that
your guest’s drivers don’t recognize, but you want to force those drivers to be
loaded anyway (e.g. if you know your device shares the same chipset as a
supported variant).
The available options are vendor-id, device-id, sub-vendor-id, and
sub-device-id. You can set any or all of these to override your device’s
default IDs.
For example:
qm set VMID -hostpci0 02:00,device-id=0x10f6,sub-vendor-id=0x0000

10.9.3. SR-IOV

Another variant for passing through PCI(e) devices is to use the hardware
virtualization features of your devices, if available.
Enabling SR-IOV
To use SR-IOV, platform support is especially important. It may be necessary
to enable this feature in the BIOS/UEFI first, or to use a specific PCI(e) port
for it to work. In doubt, consult the manual of the platform or contact its
vendor.

SR-IOV (Single-Root Input/Output Virtualization) enables
a single device to provide multiple VF (Virtual Functions) to the
system. Each of those VF can be used in a different VM, with full hardware
features and also better performance and lower latency than software
virtualized devices.
Currently, the most common use case for this are NICs (Network
Interface Card) with SR-IOV support, which can provide multiple VFs per
physical port. This allows using features such as checksum offloading, etc. to
be used inside a VM, reducing the (host) CPU overhead.
Host Configuration

Generally, there are two methods for enabling virtual functions on a device.
	
sometimes there is an option for the driver module e.g. for some
Intel drivers

 max_vfs=4
which could be put file with .conf ending under /etc/modprobe.d/.
(Do not forget to update your initramfs after that)
Please refer to your driver module documentation for the exact
parameters and options.

	
The second, more generic, approach is using the sysfs.
If a device and driver supports this you can change the number of VFs on
the fly. For example, to setup 4 VFs on device 0000:01:00.0 execute:

echo 4 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs
To make this change persistent you can use the ‘sysfsutils` Debian package.
After installation configure it via /etc/sysfs.conf or a `FILE.conf’ in
/etc/sysfs.d/.

VM Configuration

After creating VFs, you should see them as separate PCI(e) devices when
outputting them with lspci. Get their ID and pass them through like a
normal PCI(e) device.

10.9.4. Mediated Devices (vGPU, GVT-g)

Mediated devices are another method to reuse features and performance from
physical hardware for virtualized hardware. These are found most common in
virtualized GPU setups such as Intel’s GVT-g and NVIDIA’s vGPUs used in their
GRID technology.
With this, a physical Card is able to create virtual cards, similar to SR-IOV.
The difference is that mediated devices do not appear as PCI(e) devices in the
host, and are such only suited for using in virtual machines.
Host Configuration

In general your card’s driver must support that feature, otherwise it will
not work. So please refer to your vendor for compatible drivers and how to
configure them.
Intel’s drivers for GVT-g are integrated in the Kernel and should work
with 5th, 6th and 7th generation Intel Core Processors, as well as E3 v4, E3
v5 and E3 v6 Xeon Processors.
To enable it for Intel Graphics, you have to make sure to load the module
kvmgt (for example via /etc/modules) and to enable it on the
Kernel commandline and add the following parameter:
 i915.enable_gvt=1
After that remember to
update the initramfs,
and reboot your host.

VM Configuration

To use a mediated device, simply specify the mdev property on a hostpciX
VM configuration option.
You can get the supported devices via the sysfs. For example, to list the
supported types for the device 0000:00:02.0 you would simply execute:
ls /sys/bus/pci/devices/0000:00:02.0/mdev_supported_types
Each entry is a directory which contains the following important files:
	
available_instances contains the amount of still available instances of
this type, each mdev use in a VM reduces this.

	
description contains a short description about the capabilities of the type

	
create is the endpoint to create such a device, Proxmox VE does this
automatically for you, if a hostpciX option with mdev is configured.

Example configuration with an Intel GVT-g vGPU (Intel Skylake 6700k):
qm set VMID -hostpci0 00:02.0,mdev=i915-GVTg_V5_4
With this set, Proxmox VE automatically creates such a device on VM start, and
cleans it up again when the VM stops.

10.9.5. Use in Clusters

It is also possible to map devices on a cluster level, so that they can be
properly used with HA and hardware changes are detected and non root users
can configure them. See Resource Mapping
for details on that.

10.10. Hookscripts

You can add a hook script to VMs with the config property hookscript.
qm set 100 --hookscript local:snippets/hookscript.pl
It will be called during various phases of the guests lifetime.
For an example and documentation see the example script under
/usr/share/pve-docs/examples/guest-example-hookscript.pl.

10.11. Hibernation

You can suspend a VM to disk with the GUI option Hibernate or with
qm suspend ID --todisk
That means that the current content of the memory will be saved onto disk
and the VM gets stopped. On the next start, the memory content will be
loaded and the VM can continue where it was left off.
State storage selection. If no target storage for the memory is given, it will be automatically
chosen, the first of:
	
The storage vmstatestorage from the VM config.

	
The first shared storage from any VM disk.

	
The first non-shared storage from any VM disk.

	
The storage local as a fallback.

10.12. Resource Mapping

[image: screenshot/gui-datacenter-resource-mappings.png]
When using or referencing local resources (e.g. address of a pci device), using
the raw address or id is sometimes problematic, for example:
	
when using HA, a different device with the same id or path may exist on the
 target node, and if one is not careful when assigning such guests to HA
 groups, the wrong device could be used, breaking configurations.

	
changing hardware can change ids and paths, so one would have to check all
 assigned devices and see if the path or id is still correct.

To handle this better, one can define cluster wide resource mappings, such that
a resource has a cluster unique, user selected identifier which can correspond
to different devices on different hosts. With this, HA won’t start a guest with
a wrong device, and hardware changes can be detected.
Creating such a mapping can be done with the Proxmox VE web GUI under Datacenter
in the relevant tab in the Resource Mappings category, or on the cli with
pvesh create /cluster/mapping/<type> <options>
[image: screenshot/gui-datacenter-mapping-pci-edit.png]
Where <type> is the hardware type (currently either pci or usb) and
<options> are the device mappings and other configuration parameters.
Note that the options must include a map property with all identifying
properties of that hardware, so that it’s possible to verify the hardware did
not change and the correct device is passed through.
For example to add a PCI device as device1 with the path 0000:01:00.0 that
has the device id 0001 and the vendor id 0002 on the node node1, and
0000:02:00.0 on node2 you can add it with:
pvesh create /cluster/mapping/pci --id device1 \
 --map node=node1,path=0000:01:00.0,id=0002:0001 \
 --map node=node2,path=0000:02:00.0,id=0002:0001
You must repeat the map parameter for each node where that device should have
a mapping (note that you can currently only map one USB device per node per
mapping).
Using the GUI makes this much easier, as the correct properties are
automatically picked up and sent to the API.
[image: screenshot/gui-datacenter-mapping-usb-edit.png]
It’s also possible for PCI devices to provide multiple devices per node with
multiple map properties for the nodes. If such a device is assigned to a guest,
the first free one will be used when the guest is started. The order of the
paths given is also the order in which they are tried, so arbitrary allocation
policies can be implemented.
This is useful for devices with SR-IOV, since some times it is not important
which exact virtual function is passed through.
You can assign such a device to a guest either with the GUI or with
qm set ID -hostpci0 <name>
for PCI devices, or
qm set <vmid> -usb0 <name>
for USB devices.
Where <vmid> is the guests id and <name> is the chosen name for the created
mapping. All usual options for passing through the devices are allowed, such as
mdev.
To create mappings Mapping.Modify on /mapping/<type>/<name> is necessary
(where <type> is the device type and <name> is the name of the mapping).
To use these mappings, Mapping.Use on /mapping/<type>/<name> is necessary
(in addition to the normal guest privileges to edit the configuration).

10.13. Managing Virtual Machines with qm

qm is the tool to manage QEMU/KVM virtual machines on Proxmox VE. You can
create and destroy virtual machines, and control execution
(start/stop/suspend/resume). Besides that, you can use qm to set
parameters in the associated config file. It is also possible to
create and delete virtual disks.
10.13.1. CLI Usage Examples

Using an iso file uploaded on the local storage, create a VM
with a 4 GB IDE disk on the local-lvm storage
qm create 300 -ide0 local-lvm:4 -net0 e1000 -cdrom local:iso/proxmox-mailgateway_2.1.iso
Start the new VM
qm start 300
Send a shutdown request, then wait until the VM is stopped.
qm shutdown 300 && qm wait 300
Same as above, but only wait for 40 seconds.
qm shutdown 300 && qm wait 300 -timeout 40
Destroying a VM always removes it from Access Control Lists and it always
removes the firewall configuration of the VM. You have to activate
--purge, if you want to additionally remove the VM from replication jobs,
backup jobs and HA resource configurations.
qm destroy 300 --purge
Move a disk image to a different storage.
qm move-disk 300 scsi0 other-storage
Reassign a disk image to a different VM. This will remove the disk scsi1 from
the source VM and attaches it as scsi3 to the target VM. In the background
the disk image is being renamed so that the name matches the new owner.
qm move-disk 300 scsi1 --target-vmid 400 --target-disk scsi3

10.14. Configuration

VM configuration files are stored inside the Proxmox cluster file
system, and can be accessed at /etc/pve/qemu-server/<VMID>.conf.
Like other files stored inside /etc/pve/, they get automatically
replicated to all other cluster nodes.
Note
VMIDs < 100 are reserved for internal purposes, and VMIDs need to be
unique cluster wide.

Example VM Configuration.

boot: order=virtio0;net0
cores: 1
sockets: 1
memory: 512
name: webmail
ostype: l26
net0: e1000=EE:D2:28:5F:B6:3E,bridge=vmbr0
virtio0: local:vm-100-disk-1,size=32G

Those configuration files are simple text files, and you can edit them
using a normal text editor (vi, nano, …). This is sometimes
useful to do small corrections, but keep in mind that you need to
restart the VM to apply such changes.
For that reason, it is usually better to use the qm command to
generate and modify those files, or do the whole thing using the GUI.
Our toolkit is smart enough to instantaneously apply most changes to
running VM. This feature is called "hot plug", and there is no
need to restart the VM in that case.
10.14.1. File Format

VM configuration files use a simple colon separated key/value
format. Each line has the following format:
this is a comment
OPTION: value
Blank lines in those files are ignored, and lines starting with a #
character are treated as comments and are also ignored.

10.14.2. Snapshots

When you create a snapshot, qm stores the configuration at snapshot
time into a separate snapshot section within the same configuration
file. For example, after creating a snapshot called “testsnapshot”,
your configuration file will look like this:
VM configuration with snapshot.

memory: 512
swap: 512
parent: testsnaphot
...

[testsnaphot]
memory: 512
swap: 512
snaptime: 1457170803
...

There are a few snapshot related properties like parent and
snaptime. The parent property is used to store the parent/child
relationship between snapshots. snaptime is the snapshot creation
time stamp (Unix epoch).
You can optionally save the memory of a running VM with the option vmstate.
For details about how the target storage gets chosen for the VM state, see
State storage selection in the chapter
Hibernation.

10.14.3. Options

	
acpi: <boolean> (default = 1)

	
Enable/disable ACPI.

	
affinity: <string>

	
List of host cores used to execute guest processes, for example: 0,5,8-11

	
agent: [enabled=]<1|0> [,freeze-fs-on-backup=<1|0>] [,fstrim_cloned_disks=<1|0>] [,type=<virtio|isa>]

	
Enable/disable communication with the QEMU Guest Agent and its properties.

	
enabled=<boolean> (default = 0)

	
Enable/disable communication with a QEMU Guest Agent (QGA) running in the VM.

	
freeze-fs-on-backup=<boolean> (default = 1)

	
Freeze/thaw guest filesystems on backup for consistency.

	
fstrim_cloned_disks=<boolean> (default = 0)

	
Run fstrim after moving a disk or migrating the VM.

	
type=<isa | virtio> (default = virtio)

	
Select the agent type

	
arch: <aarch64 | x86_64>

	
Virtual processor architecture. Defaults to the host.

	
args: <string>

	
Arbitrary arguments passed to kvm, for example:

args: -no-reboot -smbios type=0,vendor=FOO
Note
this option is for experts only.

	
audio0: device=<ich9-intel-hda|intel-hda|AC97> [,driver=<spice|none>]

	
Configure a audio device, useful in combination with QXL/Spice.

	
device=<AC97 | ich9-intel-hda | intel-hda>

	
Configure an audio device.

	
driver=<none | spice> (default = spice)

	
Driver backend for the audio device.

	
autostart: <boolean> (default = 0)

	
Automatic restart after crash (currently ignored).

	
balloon: <integer> (0 - N)

	
Amount of target RAM for the VM in MiB. Using zero disables the ballon driver.

	
bios: <ovmf | seabios> (default = seabios)

	
Select BIOS implementation.

	
boot: [[legacy=]<[acdn]{1,4}>] [,order=<device[;device...]>]

	
Specify guest boot order. Use the order= sub-property as usage with no key or legacy= is deprecated.

	
legacy=<[acdn]{1,4}> (default = cdn)

	
Boot on floppy (a), hard disk (c), CD-ROM (d), or network (n). Deprecated, use order= instead.

	
order=<device[;device...]>

	
The guest will attempt to boot from devices in the order they appear here.

Disks, optical drives and passed-through storage USB devices will be directly
booted from, NICs will load PXE, and PCIe devices will either behave like disks
(e.g. NVMe) or load an option ROM (e.g. RAID controller, hardware NIC).
Note that only devices in this list will be marked as bootable and thus loaded
by the guest firmware (BIOS/UEFI). If you require multiple disks for booting
(e.g. software-raid), you need to specify all of them here.
Overrides the deprecated legacy=[acdn]* value when given.

	
bootdisk: (ide|sata|scsi|virtio)\d+

	
Enable booting from specified disk. Deprecated: Use boot: order=foo;bar instead.

	
cdrom: <volume>

	
This is an alias for option -ide2

	
cicustom: [meta=<volume>] [,network=<volume>] [,user=<volume>] [,vendor=<volume>]

	
cloud-init: Specify custom files to replace the automatically generated ones at start.

	
meta=<volume>

	
Specify a custom file containing all meta data passed to the VM via"
 ." cloud-init. This is provider specific meaning configdrive2 and nocloud differ.

	
network=<volume>

	
To pass a custom file containing all network data to the VM via cloud-init.

	
user=<volume>

	
To pass a custom file containing all user data to the VM via cloud-init.

	
vendor=<volume>

	
To pass a custom file containing all vendor data to the VM via cloud-init.

	
cipassword: <string>

	
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.

	
citype: <configdrive2 | nocloud | opennebula>

	
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.

	
ciupgrade: <boolean> (default = 1)

	
cloud-init: do an automatic package upgrade after the first boot.

	
ciuser: <string>

	
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.

	
cores: <integer> (1 - N) (default = 1)

	
The number of cores per socket.

	
cpu: [[cputype=]<string>] [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>] [,phys-bits=<8-64|host>] [,reported-model=<enum>]

	
Emulated CPU type.

	
cputype=<string> (default = kvm64)

	
Emulated CPU type. Can be default or custom name (custom model names must be prefixed with custom-).

	
flags=<+FLAG[;-FLAG...]>

	
List of additional CPU flags separated by ;. Use +FLAG to enable, -FLAG to disable a flag. Custom CPU models can specify any flag supported by QEMU/KVM, VM-specific flags must be from the following set for security reasons: pcid, spec-ctrl, ibpb, ssbd, virt-ssbd, amd-ssbd, amd-no-ssb, pdpe1gb, md-clear, hv-tlbflush, hv-evmcs, aes

	
hidden=<boolean> (default = 0)

	
Do not identify as a KVM virtual machine.

	
hv-vendor-id=<vendor-id>

	
The Hyper-V vendor ID. Some drivers or programs inside Windows guests need a specific ID.

	
phys-bits=<8-64|host>

	
The physical memory address bits that are reported to the guest OS. Should be smaller or equal to the host’s. Set to host to use value from host CPU, but note that doing so will break live migration to CPUs with other values.

	
reported-model=<486 | Broadwell | Broadwell-IBRS | Broadwell-noTSX | Broadwell-noTSX-IBRS | Cascadelake-Server | Cascadelake-Server-noTSX | Cascadelake-Server-v2 | Cascadelake-Server-v4 | Cascadelake-Server-v5 | Conroe | Cooperlake | Cooperlake-v2 | EPYC | EPYC-Genoa | EPYC-IBPB | EPYC-Milan | EPYC-Milan-v2 | EPYC-Rome | EPYC-Rome-v2 | EPYC-Rome-v3 | EPYC-Rome-v4 | EPYC-v3 | EPYC-v4 | GraniteRapids | Haswell | Haswell-IBRS | Haswell-noTSX | Haswell-noTSX-IBRS | Icelake-Client | Icelake-Client-noTSX | Icelake-Server | Icelake-Server-noTSX | Icelake-Server-v3 | Icelake-Server-v4 | Icelake-Server-v5 | Icelake-Server-v6 | IvyBridge | IvyBridge-IBRS | KnightsMill | Nehalem | Nehalem-IBRS | Opteron_G1 | Opteron_G2 | Opteron_G3 | Opteron_G4 | Opteron_G5 | Penryn | SandyBridge | SandyBridge-IBRS | SapphireRapids | SapphireRapids-v2 | Skylake-Client | Skylake-Client-IBRS | Skylake-Client-noTSX-IBRS | Skylake-Client-v4 | Skylake-Server | Skylake-Server-IBRS | Skylake-Server-noTSX-IBRS | Skylake-Server-v4 | Skylake-Server-v5 | Westmere | Westmere-IBRS | athlon | core2duo | coreduo | host | kvm32 | kvm64 | max | pentium | pentium2 | pentium3 | phenom | qemu32 | qemu64> (default = kvm64)

	
CPU model and vendor to report to the guest. Must be a QEMU/KVM supported model. Only valid for custom CPU model definitions, default models will always report themselves to the guest OS.

	
cpulimit: <number> (0 - 128) (default = 0)

	
Limit of CPU usage.

Note
If the computer has 2 CPUs, it has total of 2 CPU time. Value 0 indicates no CPU limit.

	
cpuunits: <integer> (1 - 262144) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to weights of all the other running VMs.

	
description: <string>

	
Description for the VM. Shown in the web-interface VM’s summary. This is saved as comment inside the configuration file.

	
efidisk0: [file=]<volume> [,efitype=<2m|4m>] [,format=<enum>] [,pre-enrolled-keys=<1|0>] [,size=<DiskSize>]

	
Configure a disk for storing EFI vars.

	
efitype=<2m | 4m> (default = 2m)

	
Size and type of the OVMF EFI vars. 4m is newer and recommended, and required for Secure Boot. For backwards compatibility, 2m is used if not otherwise specified. Ignored for VMs with arch=aarch64 (ARM).

	
file=<volume>

	
The drive’s backing volume.

	
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>

	
The drive’s backing file’s data format.

	
pre-enrolled-keys=<boolean> (default = 0)

	
Use am EFI vars template with distribution-specific and Microsoft Standard keys enrolled, if used with efitype=4m. Note that this will enable Secure Boot by default, though it can still be turned off from within the VM.

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
freeze: <boolean>

	
Freeze CPU at startup (use c monitor command to start execution).

	
hookscript: <string>

	
Script that will be executed during various steps in the vms lifetime.

	
hostpci[n]: [[host=]<HOSTPCIID[;HOSTPCIID2...]>] [,device-id=<hex id>] [,legacy-igd=<1|0>] [,mapping=<mapping-id>] [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,sub-device-id=<hex id>] [,sub-vendor-id=<hex id>] [,vendor-id=<hex id>] [,x-vga=<1|0>]

	
Map host PCI devices into guest.

Note
This option allows direct access to host hardware. So it is no longer
possible to migrate such machines - use with special care.

Caution
Experimental! User reported problems with this option.

	
device-id=<hex id>

	
Override PCI device ID visible to guest

	
host=<HOSTPCIID[;HOSTPCIID2...]>

	
Host PCI device pass through. The PCI ID of a host’s PCI device or a list
of PCI virtual functions of the host. HOSTPCIID syntax is:

bus:dev.func (hexadecimal numbers)
You can us the lspci command to list existing PCI devices.
Either this or the mapping key must be set.

	
legacy-igd=<boolean> (default = 0)

	
Pass this device in legacy IGD mode, making it the primary and exclusive graphics device in the VM. Requires pc-i440fx machine type and VGA set to none.

	
mapping=<mapping-id>

	
The ID of a cluster wide mapping. Either this or the default-key host must be set.

	
mdev=<string>

	
The type of mediated device to use.
An instance of this type will be created on startup of the VM and
will be cleaned up when the VM stops.

	
pcie=<boolean> (default = 0)

	
Choose the PCI-express bus (needs the q35 machine model).

	
rombar=<boolean> (default = 1)

	
Specify whether or not the device’s ROM will be visible in the guest’s memory map.

	
romfile=<string>

	
Custom pci device rom filename (must be located in /usr/share/kvm/).

	
sub-device-id=<hex id>

	
Override PCI subsystem device ID visible to guest

	
sub-vendor-id=<hex id>

	
Override PCI subsystem vendor ID visible to guest

	
vendor-id=<hex id>

	
Override PCI vendor ID visible to guest

	
x-vga=<boolean> (default = 0)

	
Enable vfio-vga device support.

	
hotplug: <string> (default = network,disk,usb)

	
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory, usb and cloudinit. Use 0 to disable hotplug completely. Using 1 as value is an alias for the default network,disk,usb. USB hotplugging is possible for guests with machine version >= 7.1 and ostype l26 or windows > 7.

	
hugepages: <1024 | 2 | any>

	
Enable/disable hugepages memory.

	
ide[n]: [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as IDE hard disk or CD-ROM (n is 0 to 3).

	
aio=<io_uring | native | threads>

	
AIO type to use.

	
backup=<boolean>

	
Whether the drive should be included when making backups.

	
bps=<bps>

	
Maximum r/w speed in bytes per second.

	
bps_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
bps_rd=<bps>

	
Maximum read speed in bytes per second.

	
bps_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
bps_wr=<bps>

	
Maximum write speed in bytes per second.

	
bps_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
cache=<directsync | none | unsafe | writeback | writethrough>

	
The drive’s cache mode

	
cyls=<integer>

	
Force the drive’s physical geometry to have a specific cylinder count.

	
detect_zeroes=<boolean>

	
Controls whether to detect and try to optimize writes of zeroes.

	
discard=<ignore | on>

	
Controls whether to pass discard/trim requests to the underlying storage.

	
file=<volume>

	
The drive’s backing volume.

	
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>

	
The drive’s backing file’s data format.

	
heads=<integer>

	
Force the drive’s physical geometry to have a specific head count.

	
iops=<iops>

	
Maximum r/w I/O in operations per second.

	
iops_max=<iops>

	
Maximum unthrottled r/w I/O pool in operations per second.

	
iops_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
iops_rd=<iops>

	
Maximum read I/O in operations per second.

	
iops_rd_max=<iops>

	
Maximum unthrottled read I/O pool in operations per second.

	
iops_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
iops_wr=<iops>

	
Maximum write I/O in operations per second.

	
iops_wr_max=<iops>

	
Maximum unthrottled write I/O pool in operations per second.

	
iops_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
mbps=<mbps>

	
Maximum r/w speed in megabytes per second.

	
mbps_max=<mbps>

	
Maximum unthrottled r/w pool in megabytes per second.

	
mbps_rd=<mbps>

	
Maximum read speed in megabytes per second.

	
mbps_rd_max=<mbps>

	
Maximum unthrottled read pool in megabytes per second.

	
mbps_wr=<mbps>

	
Maximum write speed in megabytes per second.

	
mbps_wr_max=<mbps>

	
Maximum unthrottled write pool in megabytes per second.

	
media=<cdrom | disk> (default = disk)

	
The drive’s media type.

	
model=<model>

	
The drive’s reported model name, url-encoded, up to 40 bytes long.

	
replicate=<boolean> (default = 1)

	
Whether the drive should considered for replication jobs.

	
rerror=<ignore | report | stop>

	
Read error action.

	
secs=<integer>

	
Force the drive’s physical geometry to have a specific sector count.

	
serial=<serial>

	
The drive’s reported serial number, url-encoded, up to 20 bytes long.

	
shared=<boolean> (default = 0)

	
Mark this locally-managed volume as available on all nodes.

Warning
This option does not share the volume automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
snapshot=<boolean>

	
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.

	
ssd=<boolean>

	
Whether to expose this drive as an SSD, rather than a rotational hard disk.

	
trans=<auto | lba | none>

	
Force disk geometry bios translation mode.

	
werror=<enospc | ignore | report | stop>

	
Write error action.

	
wwn=<wwn>

	
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.

	
ipconfig[n]: [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]

	
cloud-init: Specify IP addresses and gateways for the corresponding interface.

IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit
gateway should be provided.
For IPv6 the special string auto can be used to use stateless autoconfiguration. This requires
cloud-init 19.4 or newer.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using
dhcp on IPv4.
	
gw=<GatewayIPv4>

	
Default gateway for IPv4 traffic.

Note
Requires option(s): ip

	
gw6=<GatewayIPv6>

	
Default gateway for IPv6 traffic.

Note
Requires option(s): ip6

	
ip=<IPv4Format/CIDR> (default = dhcp)

	
IPv4 address in CIDR format.

	
ip6=<IPv6Format/CIDR> (default = dhcp)

	
IPv6 address in CIDR format.

	
ivshmem: size=<integer> [,name=<string>]

	
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.

	
name=<string>

	
The name of the file. Will be prefixed with pve-shm-. Default is the VMID. Will be deleted when the VM is stopped.

	
size=<integer> (1 - N)

	
The size of the file in MB.

	
keephugepages: <boolean> (default = 0)

	
Use together with hugepages. If enabled, hugepages will not not be deleted after VM shutdown and can be used for subsequent starts.

	
keyboard: <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>

	
Keyboard layout for VNC server. This option is generally not required and is often better handled from within the guest OS.

	
kvm: <boolean> (default = 1)

	
Enable/disable KVM hardware virtualization.

	
localtime: <boolean>

	
Set the real time clock (RTC) to local time. This is enabled by default if the ostype indicates a Microsoft Windows OS.

	
lock: <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>

	
Lock/unlock the VM.

	
machine: (pc|pc(-i440fx)?-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|q35|pc-q35-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|virt(?:-\d+(\.\d+)+)?(\+pve\d+)?)

	
Specifies the QEMU machine type.

	
memory: [current=]<integer>

	
Memory properties.

	
current=<integer> (16 - N) (default = 512)

	
Current amount of online RAM for the VM in MiB. This is the maximum available memory when you use the balloon device.

	
migrate_downtime: <number> (0 - N) (default = 0.1)

	
Set maximum tolerated downtime (in seconds) for migrations.

	
migrate_speed: <integer> (0 - N) (default = 0)

	
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.

	
name: <string>

	
Set a name for the VM. Only used on the configuration web interface.

	
nameserver: <string>

	
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
net[n]: [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,mtu=<integer>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]

	
Specify network devices.

	
bridge=<bridge>

	
Bridge to attach the network device to. The Proxmox VE standard bridge
is called vmbr0.

If you do not specify a bridge, we create a kvm user (NATed) network
device, which provides DHCP and DNS services. The following addresses
are used:
10.0.2.2 Gateway
10.0.2.3 DNS Server
10.0.2.4 SMB Server
The DHCP server assign addresses to the guest starting from 10.0.2.15.

	
firewall=<boolean>

	
Whether this interface should be protected by the firewall.

	
link_down=<boolean>

	
Whether this interface should be disconnected (like pulling the plug).

	
macaddr=<XX:XX:XX:XX:XX:XX>

	
A common MAC address with the I/G (Individual/Group) bit not set.

	
model=<e1000 | e1000-82540em | e1000-82544gc | e1000-82545em | e1000e | i82551 | i82557b | i82559er | ne2k_isa | ne2k_pci | pcnet | rtl8139 | virtio | vmxnet3>

	
Network Card Model. The virtio model provides the best performance with very low CPU overhead. If your guest does not support this driver, it is usually best to use e1000.

	
mtu=<integer> (1 - 65520)

	
Force MTU, for VirtIO only. Set to 1 to use the bridge MTU

	
queues=<integer> (0 - 64)

	
Number of packet queues to be used on the device.

	
rate=<number> (0 - N)

	
Rate limit in mbps (megabytes per second) as floating point number.

	
tag=<integer> (1 - 4094)

	
VLAN tag to apply to packets on this interface.

	
trunks=<vlanid[;vlanid...]>

	
VLAN trunks to pass through this interface.

	
numa: <boolean> (default = 0)

	
Enable/disable NUMA.

	
numa[n]: cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]

	
NUMA topology.

	
cpus=<id[-id];...>

	
CPUs accessing this NUMA node.

	
hostnodes=<id[-id];...>

	
Host NUMA nodes to use.

	
memory=<number>

	
Amount of memory this NUMA node provides.

	
policy=<bind | interleave | preferred>

	
NUMA allocation policy.

	
onboot: <boolean> (default = 0)

	
Specifies whether a VM will be started during system bootup.

	
ostype: <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win11 | win7 | win8 | wvista | wxp>

	
Specify guest operating system. This is used to enable special
optimization/features for specific operating systems:

	

other

	

unspecified OS

	

wxp

	

Microsoft Windows XP

	

w2k

	

Microsoft Windows 2000

	

w2k3

	

Microsoft Windows 2003

	

w2k8

	

Microsoft Windows 2008

	

wvista

	

Microsoft Windows Vista

	

win7

	

Microsoft Windows 7

	

win8

	

Microsoft Windows 8/2012/2012r2

	

win10

	

Microsoft Windows 10/2016/2019

	

win11

	

Microsoft Windows 11/2022

	

l24

	

Linux 2.4 Kernel

	

l26

	

Linux 2.6 - 6.X Kernel

	

solaris

	

Solaris/OpenSolaris/OpenIndiania kernel

	
parallel[n]: /dev/parport\d+|/dev/usb/lp\d+

	
Map host parallel devices (n is 0 to 2).

Note
This option allows direct access to host hardware. So it is no longer possible to migrate such
machines - use with special care.

Caution
Experimental! User reported problems with this option.

	
protection: <boolean> (default = 0)

	
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.

	
reboot: <boolean> (default = 1)

	
Allow reboot. If set to 0 the VM exit on reboot.

	
rng0: [source=]</dev/urandom|/dev/random|/dev/hwrng> [,max_bytes=<integer>] [,period=<integer>]

	
Configure a VirtIO-based Random Number Generator.

	
max_bytes=<integer> (default = 1024)

	
Maximum bytes of entropy allowed to get injected into the guest every period milliseconds. Prefer a lower value when using /dev/random as source. Use 0 to disable limiting (potentially dangerous!).

	
period=<integer> (default = 1000)

	
Every period milliseconds the entropy-injection quota is reset, allowing the guest to retrieve another max_bytes of entropy.

	
source=</dev/hwrng | /dev/random | /dev/urandom>

	
The file on the host to gather entropy from. In most cases /dev/urandom should be preferred over /dev/random to avoid entropy-starvation issues on the host. Using urandom does not decrease security in any meaningful way, as it’s still seeded from real entropy, and the bytes provided will most likely be mixed with real entropy on the guest as well. /dev/hwrng can be used to pass through a hardware RNG from the host.

	
sata[n]: [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SATA hard disk or CD-ROM (n is 0 to 5).

	
aio=<io_uring | native | threads>

	
AIO type to use.

	
backup=<boolean>

	
Whether the drive should be included when making backups.

	
bps=<bps>

	
Maximum r/w speed in bytes per second.

	
bps_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
bps_rd=<bps>

	
Maximum read speed in bytes per second.

	
bps_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
bps_wr=<bps>

	
Maximum write speed in bytes per second.

	
bps_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
cache=<directsync | none | unsafe | writeback | writethrough>

	
The drive’s cache mode

	
cyls=<integer>

	
Force the drive’s physical geometry to have a specific cylinder count.

	
detect_zeroes=<boolean>

	
Controls whether to detect and try to optimize writes of zeroes.

	
discard=<ignore | on>

	
Controls whether to pass discard/trim requests to the underlying storage.

	
file=<volume>

	
The drive’s backing volume.

	
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>

	
The drive’s backing file’s data format.

	
heads=<integer>

	
Force the drive’s physical geometry to have a specific head count.

	
iops=<iops>

	
Maximum r/w I/O in operations per second.

	
iops_max=<iops>

	
Maximum unthrottled r/w I/O pool in operations per second.

	
iops_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
iops_rd=<iops>

	
Maximum read I/O in operations per second.

	
iops_rd_max=<iops>

	
Maximum unthrottled read I/O pool in operations per second.

	
iops_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
iops_wr=<iops>

	
Maximum write I/O in operations per second.

	
iops_wr_max=<iops>

	
Maximum unthrottled write I/O pool in operations per second.

	
iops_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
mbps=<mbps>

	
Maximum r/w speed in megabytes per second.

	
mbps_max=<mbps>

	
Maximum unthrottled r/w pool in megabytes per second.

	
mbps_rd=<mbps>

	
Maximum read speed in megabytes per second.

	
mbps_rd_max=<mbps>

	
Maximum unthrottled read pool in megabytes per second.

	
mbps_wr=<mbps>

	
Maximum write speed in megabytes per second.

	
mbps_wr_max=<mbps>

	
Maximum unthrottled write pool in megabytes per second.

	
media=<cdrom | disk> (default = disk)

	
The drive’s media type.

	
replicate=<boolean> (default = 1)

	
Whether the drive should considered for replication jobs.

	
rerror=<ignore | report | stop>

	
Read error action.

	
secs=<integer>

	
Force the drive’s physical geometry to have a specific sector count.

	
serial=<serial>

	
The drive’s reported serial number, url-encoded, up to 20 bytes long.

	
shared=<boolean> (default = 0)

	
Mark this locally-managed volume as available on all nodes.

Warning
This option does not share the volume automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
snapshot=<boolean>

	
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.

	
ssd=<boolean>

	
Whether to expose this drive as an SSD, rather than a rotational hard disk.

	
trans=<auto | lba | none>

	
Force disk geometry bios translation mode.

	
werror=<enospc | ignore | report | stop>

	
Write error action.

	
wwn=<wwn>

	
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.

	
scsi[n]: [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,product=<product>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,vendor=<vendor>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SCSI hard disk or CD-ROM (n is 0 to 30).

	
aio=<io_uring | native | threads>

	
AIO type to use.

	
backup=<boolean>

	
Whether the drive should be included when making backups.

	
bps=<bps>

	
Maximum r/w speed in bytes per second.

	
bps_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
bps_rd=<bps>

	
Maximum read speed in bytes per second.

	
bps_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
bps_wr=<bps>

	
Maximum write speed in bytes per second.

	
bps_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
cache=<directsync | none | unsafe | writeback | writethrough>

	
The drive’s cache mode

	
cyls=<integer>

	
Force the drive’s physical geometry to have a specific cylinder count.

	
detect_zeroes=<boolean>

	
Controls whether to detect and try to optimize writes of zeroes.

	
discard=<ignore | on>

	
Controls whether to pass discard/trim requests to the underlying storage.

	
file=<volume>

	
The drive’s backing volume.

	
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>

	
The drive’s backing file’s data format.

	
heads=<integer>

	
Force the drive’s physical geometry to have a specific head count.

	
iops=<iops>

	
Maximum r/w I/O in operations per second.

	
iops_max=<iops>

	
Maximum unthrottled r/w I/O pool in operations per second.

	
iops_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
iops_rd=<iops>

	
Maximum read I/O in operations per second.

	
iops_rd_max=<iops>

	
Maximum unthrottled read I/O pool in operations per second.

	
iops_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
iops_wr=<iops>

	
Maximum write I/O in operations per second.

	
iops_wr_max=<iops>

	
Maximum unthrottled write I/O pool in operations per second.

	
iops_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
iothread=<boolean>

	
Whether to use iothreads for this drive

	
mbps=<mbps>

	
Maximum r/w speed in megabytes per second.

	
mbps_max=<mbps>

	
Maximum unthrottled r/w pool in megabytes per second.

	
mbps_rd=<mbps>

	
Maximum read speed in megabytes per second.

	
mbps_rd_max=<mbps>

	
Maximum unthrottled read pool in megabytes per second.

	
mbps_wr=<mbps>

	
Maximum write speed in megabytes per second.

	
mbps_wr_max=<mbps>

	
Maximum unthrottled write pool in megabytes per second.

	
media=<cdrom | disk> (default = disk)

	
The drive’s media type.

	
product=<product>

	
The drive’s product name, up to 16 bytes long.

	
queues=<integer> (2 - N)

	
Number of queues.

	
replicate=<boolean> (default = 1)

	
Whether the drive should considered for replication jobs.

	
rerror=<ignore | report | stop>

	
Read error action.

	
ro=<boolean>

	
Whether the drive is read-only.

	
scsiblock=<boolean> (default = 0)

	
whether to use scsi-block for full passthrough of host block device

Warning
can lead to I/O errors in combination with low memory or high memory fragmentation on host

	
secs=<integer>

	
Force the drive’s physical geometry to have a specific sector count.

	
serial=<serial>

	
The drive’s reported serial number, url-encoded, up to 20 bytes long.

	
shared=<boolean> (default = 0)

	
Mark this locally-managed volume as available on all nodes.

Warning
This option does not share the volume automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
snapshot=<boolean>

	
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.

	
ssd=<boolean>

	
Whether to expose this drive as an SSD, rather than a rotational hard disk.

	
trans=<auto | lba | none>

	
Force disk geometry bios translation mode.

	
vendor=<vendor>

	
The drive’s vendor name, up to 8 bytes long.

	
werror=<enospc | ignore | report | stop>

	
Write error action.

	
wwn=<wwn>

	
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.

	
scsihw: <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)

	
SCSI controller model

	
searchdomain: <string>

	
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
serial[n]: (/dev/.+|socket)

	
Create a serial device inside the VM (n is 0 to 3), and pass through a
host serial device (i.e. /dev/ttyS0), or create a unix socket on the
host side (use qm terminal to open a terminal connection).

Note
If you pass through a host serial device, it is no longer possible to migrate such machines -
use with special care.

Caution
Experimental! User reported problems with this option.

	
shares: <integer> (0 - 50000) (default = 1000)

	
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.

	
smbios1: [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]

	
Specify SMBIOS type 1 fields.

	
base64=<boolean>

	
Flag to indicate that the SMBIOS values are base64 encoded

	
family=<Base64 encoded string>

	
Set SMBIOS1 family string.

	
manufacturer=<Base64 encoded string>

	
Set SMBIOS1 manufacturer.

	
product=<Base64 encoded string>

	
Set SMBIOS1 product ID.

	
serial=<Base64 encoded string>

	
Set SMBIOS1 serial number.

	
sku=<Base64 encoded string>

	
Set SMBIOS1 SKU string.

	
uuid=<UUID>

	
Set SMBIOS1 UUID.

	
version=<Base64 encoded string>

	
Set SMBIOS1 version.

	
smp: <integer> (1 - N) (default = 1)

	
The number of CPUs. Please use option -sockets instead.

	
sockets: <integer> (1 - N) (default = 1)

	
The number of CPU sockets.

	
spice_enhancements: [foldersharing=<1|0>] [,videostreaming=<off|all|filter>]

	
Configure additional enhancements for SPICE.

	
foldersharing=<boolean> (default = 0)

	
Enable folder sharing via SPICE. Needs Spice-WebDAV daemon installed in the VM.

	
videostreaming=<all | filter | off> (default = off)

	
Enable video streaming. Uses compression for detected video streams.

	
sshkeys: <string>

	
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).

	
startdate: (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)

	
Set the initial date of the real time clock. Valid format for date are:'now' or 2006-06-17T16:01:21 or 2006-06-17.

	
startup: `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
tablet: <boolean> (default = 1)

	
Enable/disable the USB tablet device. This device is usually needed to allow absolute mouse positioning with VNC. Else the mouse runs out of sync with normal VNC clients. If you’re running lots of console-only guests on one host, you may consider disabling this to save some context switches. This is turned off by default if you use spice (qm set <vmid> --vga qxl).

	
tags: <string>

	
Tags of the VM. This is only meta information.

	
tdf: <boolean> (default = 0)

	
Enable/disable time drift fix.

	
template: <boolean> (default = 0)

	
Enable/disable Template.

	
tpmstate0: [file=]<volume> [,size=<DiskSize>] [,version=<v1.2|v2.0>]

	
Configure a Disk for storing TPM state. The format is fixed to raw.

	
file=<volume>

	
The drive’s backing volume.

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
version=<v1.2 | v2.0> (default = v2.0)

	
The TPM interface version. v2.0 is newer and should be preferred. Note that this cannot be changed later on.

	
unused[n]: [file=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

	
file=<volume>

	
The drive’s backing volume.

	
usb[n]: [[host=]<HOSTUSBDEVICE|spice>] [,mapping=<mapping-id>] [,usb3=<1|0>]

	
Configure an USB device (n is 0 to 4, for machine version >= 7.1 and ostype l26 or windows > 7, n can be up to 14).

	
host=<HOSTUSBDEVICE|spice>

	
The Host USB device or port or the value spice. HOSTUSBDEVICE syntax is:

'bus-port(.port)*' (decimal numbers) or
'vendor_id:product_id' (hexadeciaml numbers) or
'spice'
You can use the lsusb -t command to list existing usb devices.
Note
This option allows direct access to host hardware. So it is no longer possible to migrate such
machines - use with special care.

The value spice can be used to add a usb redirection devices for spice.
Either this or the mapping key must be set.

	
mapping=<mapping-id>

	
The ID of a cluster wide mapping. Either this or the default-key host must be set.

	
usb3=<boolean> (default = 0)

	
Specifies whether if given host option is a USB3 device or port. For modern guests (machine version >= 7.1 and ostype l26 and windows > 7), this flag is irrelevant (all devices are plugged into a xhci controller).

	
vcpus: <integer> (1 - N) (default = 0)

	
Number of hotplugged vcpus.

	
vga: [[type=]<enum>] [,clipboard=<vnc>] [,memory=<integer>]

	
Configure the VGA Hardware. If you want to use high resolution modes (>= 1280x1024x16) you may need to increase the vga memory option. Since QEMU 2.9 the default VGA display type is std for all OS types besides some Windows versions (XP and older) which use cirrus. The qxl option enables the SPICE display server. For win* OS you can select how many independent displays you want, Linux guests can add displays them self.
You can also run without any graphic card, using a serial device as terminal.

	
clipboard=<vnc>

	
Enable a specific clipboard. If not set, depending on the display type the SPICE one will be added. Migration with VNC clipboard is not yet supported!

	
memory=<integer> (4 - 512)

	
Sets the VGA memory (in MiB). Has no effect with serial display.

	
type=<cirrus | none | qxl | qxl2 | qxl3 | qxl4 | serial0 | serial1 | serial2 | serial3 | std | virtio | virtio-gl | vmware> (default = std)

	
Select the VGA type.

	
virtio[n]: [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]

	
Use volume as VIRTIO hard disk (n is 0 to 15).

	
aio=<io_uring | native | threads>

	
AIO type to use.

	
backup=<boolean>

	
Whether the drive should be included when making backups.

	
bps=<bps>

	
Maximum r/w speed in bytes per second.

	
bps_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
bps_rd=<bps>

	
Maximum read speed in bytes per second.

	
bps_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
bps_wr=<bps>

	
Maximum write speed in bytes per second.

	
bps_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
cache=<directsync | none | unsafe | writeback | writethrough>

	
The drive’s cache mode

	
cyls=<integer>

	
Force the drive’s physical geometry to have a specific cylinder count.

	
detect_zeroes=<boolean>

	
Controls whether to detect and try to optimize writes of zeroes.

	
discard=<ignore | on>

	
Controls whether to pass discard/trim requests to the underlying storage.

	
file=<volume>

	
The drive’s backing volume.

	
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>

	
The drive’s backing file’s data format.

	
heads=<integer>

	
Force the drive’s physical geometry to have a specific head count.

	
iops=<iops>

	
Maximum r/w I/O in operations per second.

	
iops_max=<iops>

	
Maximum unthrottled r/w I/O pool in operations per second.

	
iops_max_length=<seconds>

	
Maximum length of I/O bursts in seconds.

	
iops_rd=<iops>

	
Maximum read I/O in operations per second.

	
iops_rd_max=<iops>

	
Maximum unthrottled read I/O pool in operations per second.

	
iops_rd_max_length=<seconds>

	
Maximum length of read I/O bursts in seconds.

	
iops_wr=<iops>

	
Maximum write I/O in operations per second.

	
iops_wr_max=<iops>

	
Maximum unthrottled write I/O pool in operations per second.

	
iops_wr_max_length=<seconds>

	
Maximum length of write I/O bursts in seconds.

	
iothread=<boolean>

	
Whether to use iothreads for this drive

	
mbps=<mbps>

	
Maximum r/w speed in megabytes per second.

	
mbps_max=<mbps>

	
Maximum unthrottled r/w pool in megabytes per second.

	
mbps_rd=<mbps>

	
Maximum read speed in megabytes per second.

	
mbps_rd_max=<mbps>

	
Maximum unthrottled read pool in megabytes per second.

	
mbps_wr=<mbps>

	
Maximum write speed in megabytes per second.

	
mbps_wr_max=<mbps>

	
Maximum unthrottled write pool in megabytes per second.

	
media=<cdrom | disk> (default = disk)

	
The drive’s media type.

	
replicate=<boolean> (default = 1)

	
Whether the drive should considered for replication jobs.

	
rerror=<ignore | report | stop>

	
Read error action.

	
ro=<boolean>

	
Whether the drive is read-only.

	
secs=<integer>

	
Force the drive’s physical geometry to have a specific sector count.

	
serial=<serial>

	
The drive’s reported serial number, url-encoded, up to 20 bytes long.

	
shared=<boolean> (default = 0)

	
Mark this locally-managed volume as available on all nodes.

Warning
This option does not share the volume automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Disk size. This is purely informational and has no effect.

	
snapshot=<boolean>

	
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.

	
trans=<auto | lba | none>

	
Force disk geometry bios translation mode.

	
werror=<enospc | ignore | report | stop>

	
Write error action.

	
vmgenid: <UUID> (default = 1 (autogenerated))

	
The VM generation ID (vmgenid) device exposes a 128-bit integer value identifier to the guest OS. This allows to notify the guest operating system when the virtual machine is executed with a different configuration (e.g. snapshot execution or creation from a template). The guest operating system notices the change, and is then able to react as appropriate by marking its copies of distributed databases as dirty, re-initializing its random number generator, etc.
Note that auto-creation only works when done through API/CLI create or update methods, but not when manually editing the config file.

	
vmstatestorage: <string>

	
Default storage for VM state volumes/files.

	
watchdog: [[model=]<i6300esb|ib700>] [,action=<enum>]

	
Create a virtual hardware watchdog device. Once enabled (by a guest action), the watchdog must be periodically polled by an agent inside the guest or else the watchdog will reset the guest (or execute the respective action specified)

	
action=<debug | none | pause | poweroff | reset | shutdown>

	
The action to perform if after activation the guest fails to poll the watchdog in time.

	
model=<i6300esb | ib700> (default = i6300esb)

	
Watchdog type to emulate.

10.15. Locks

Online migrations, snapshots and backups (vzdump) set a lock to prevent
incompatible concurrent actions on the affected VMs. Sometimes you need to
remove such a lock manually (for example after a power failure).
qm unlock <vmid>
Caution
Only do that if you are sure the action which set the lock is
no longer running.

Chapter 11. Proxmox Container Toolkit

Containers are a lightweight alternative to fully virtualized machines (VMs).
They use the kernel of the host system that they run on, instead of emulating a
full operating system (OS). This means that containers can access resources on
the host system directly.
The runtime costs for containers is low, usually negligible. However, there are
some drawbacks that need be considered:
	
Only Linux distributions can be run in Proxmox Containers. It is not possible to run
 other operating systems like, for example, FreeBSD or Microsoft Windows
 inside a container.

	
For security reasons, access to host resources needs to be restricted.
 Therefore, containers run in their own separate namespaces. Additionally some
 syscalls (user space requests to the Linux kernel) are not allowed within containers.

Proxmox VE uses Linux Containers (LXC) as its underlying
container technology. The “Proxmox Container Toolkit” (pct) simplifies the
usage and management of LXC, by providing an interface that abstracts
complex tasks.
Containers are tightly integrated with Proxmox VE. This means that they are aware of
the cluster setup, and they can use the same network and storage resources as
virtual machines. You can also use the Proxmox VE firewall, or manage containers
using the HA framework.
Our primary goal is to offer an environment that provides the benefits of using a
VM, but without the additional overhead. This means that Proxmox Containers can
be categorized as “System Containers”, rather than “Application Containers”.
Note
If you want to run application containers, for example, Docker images, it
is recommended that you run them inside a Proxmox QEMU VM. This will give you
all the advantages of application containerization, while also providing the
benefits that VMs offer, such as strong isolation from the host and the ability
to live-migrate, which otherwise isn’t possible with containers.

11.1. Technology Overview

	
LXC (https://linuxcontainers.org/)

	
Integrated into Proxmox VE graphical web user interface (GUI)

	
Easy to use command-line tool pct

	
Access via Proxmox VE REST API

	
lxcfs to provide containerized /proc file system

	
Control groups (cgroups) for resource isolation and limitation

	
AppArmor and seccomp to improve security

	
Modern Linux kernels

	
Image based deployment (templates)

	
Uses Proxmox VE storage library

	
Container setup from host (network, DNS, storage, etc.)

11.2. Supported Distributions

List of officially supported distributions can be found below.
Templates for the following distributions are available through our
repositories. You can use pveam tool or the
Graphical User Interface to download them.
11.2.1. Alpine Linux

	 	Alpine Linux is a security-oriented, lightweight Linux distribution based on
musl libc and busybox.
	
	 	--
https://alpinelinux.org

For currently supported releases see:
https://alpinelinux.org/releases/

11.2.2. Arch Linux

	 	Arch Linux, a lightweight and flexible Linux® distribution that tries to Keep It Simple.
	
	 	--
https://archlinux.org/

Arch Linux is using a rolling-release model, see its wiki for more details:
https://wiki.archlinux.org/title/Arch_Linux

11.2.3. CentOS, Almalinux, Rocky Linux

CentOS / CentOS Stream

	 	The CentOS Linux distribution is a stable, predictable, manageable and
reproducible platform derived from the sources of Red Hat Enterprise Linux
(RHEL)
	
	 	--
https://centos.org

For currently supported releases see:
https://en.wikipedia.org/wiki/CentOS#End-of-support_schedule

Almalinux

	 	An Open Source, community owned and governed, forever-free enterprise Linux
distribution, focused on long-term stability, providing a robust
production-grade platform. AlmaLinux OS is 1:1 binary compatible with RHEL® and
pre-Stream CentOS.
	
	 	--
https://almalinux.org

For currently supported releases see:
https://en.wikipedia.org/wiki/AlmaLinux#Releases

Rocky Linux

	 	Rocky Linux is a community enterprise operating system designed to be 100%
bug-for-bug compatible with America’s top enterprise Linux distribution now
that its downstream partner has shifted direction.
	
	 	--
https://rockylinux.org

For currently supported releases see:
https://en.wikipedia.org/wiki/Rocky_Linux#Releases

11.2.4. Debian

	 	Debian is a free operating system, developed and maintained by the Debian
project. A free Linux distribution with thousands of applications to meet our
users' needs.
	
	 	--
https://www.debian.org/intro/index#software

For currently supported releases see:
https://www.debian.org/releases/stable/releasenotes

11.2.5. Devuan

	 	Devuan GNU+Linux is a fork of Debian without systemd that allows users to
reclaim control over their system by avoiding unnecessary entanglements and
ensuring Init Freedom.
	
	 	--
https://www.devuan.org

For currently supported releases see:
https://www.devuan.org/os/releases

11.2.6. Fedora

	 	Fedora creates an innovative, free, and open source platform for hardware,
clouds, and containers that enables software developers and community members
to build tailored solutions for their users.
	
	 	--
https://getfedora.org

For currently supported releases see:
https://fedoraproject.org/wiki/Releases

11.2.7. Gentoo

	 	a highly flexible, source-based Linux distribution.
	
	 	--
https://www.gentoo.org

Gentoo is using a rolling-release model.

11.2.8. OpenSUSE

	 	The makers' choice for sysadmins, developers and desktop users.
	
	 	--
https://www.opensuse.org

For currently supported releases see:
https://get.opensuse.org/leap/

11.2.9. Ubuntu

	 	Ubuntu is the modern, open source operating system on Linux for the enterprise
server, desktop, cloud, and IoT.
	
	 	--
https://ubuntu.com/

For currently supported releases see:
https://wiki.ubuntu.com/Releases

11.3. Container Images

Container images, sometimes also referred to as “templates” or
“appliances”, are tar archives which contain everything to run a container.
Proxmox VE itself provides a variety of basic templates for the
most common Linux distributions. They can be
downloaded using the GUI or the pveam (short for Proxmox VE Appliance Manager)
command-line utility. Additionally, TurnKey
Linux container templates are also available to download.
The list of available templates is updated daily through the pve-daily-update
timer. You can also trigger an update manually by executing:
pveam update
To view the list of available images run:
pveam available
You can restrict this large list by specifying the section you are
interested in, for example basic system images:
List available system images.

pveam available --section system
system alpine-3.12-default_20200823_amd64.tar.xz
system alpine-3.13-default_20210419_amd64.tar.xz
system alpine-3.14-default_20210623_amd64.tar.xz
system archlinux-base_20210420-1_amd64.tar.gz
system centos-7-default_20190926_amd64.tar.xz
system centos-8-default_20201210_amd64.tar.xz
system debian-9.0-standard_9.7-1_amd64.tar.gz
system debian-10-standard_10.7-1_amd64.tar.gz
system devuan-3.0-standard_3.0_amd64.tar.gz
system fedora-33-default_20201115_amd64.tar.xz
system fedora-34-default_20210427_amd64.tar.xz
system gentoo-current-default_20200310_amd64.tar.xz
system opensuse-15.2-default_20200824_amd64.tar.xz
system ubuntu-16.04-standard_16.04.5-1_amd64.tar.gz
system ubuntu-18.04-standard_18.04.1-1_amd64.tar.gz
system ubuntu-20.04-standard_20.04-1_amd64.tar.gz
system ubuntu-20.10-standard_20.10-1_amd64.tar.gz
system ubuntu-21.04-standard_21.04-1_amd64.tar.gz

Before you can use such a template, you need to download them into one of your
storages. If you’re unsure to which one, you can simply use the local named
storage for that purpose. For clustered installations, it is preferred to use a
shared storage so that all nodes can access those images.
pveam download local debian-10.0-standard_10.0-1_amd64.tar.gz
You are now ready to create containers using that image, and you can list all
downloaded images on storage local with:
pveam list local
local:vztmpl/debian-10.0-standard_10.0-1_amd64.tar.gz 219.95MB
Tip
You can also use the Proxmox VE web interface GUI to download, list and delete
container templates.

pct uses them to create a new container, for example:
pct create 999 local:vztmpl/debian-10.0-standard_10.0-1_amd64.tar.gz
The above command shows you the full Proxmox VE volume identifiers. They include the
storage name, and most other Proxmox VE commands can use them. For example you can
delete that image later with:
pveam remove local:vztmpl/debian-10.0-standard_10.0-1_amd64.tar.gz

11.4. Container Settings

11.4.1. General Settings

[image: screenshot/gui-create-ct-general.png]
General settings of a container include
	
the Node : the physical server on which the container will run

	
the CT ID: a unique number in this Proxmox VE installation used to identify your
 container

	
Hostname: the hostname of the container

	
Resource Pool: a logical group of containers and VMs

	
Password: the root password of the container

	
SSH Public Key: a public key for connecting to the root account over SSH

	
Unprivileged container: this option allows to choose at creation time
 if you want to create a privileged or unprivileged container.

Unprivileged Containers

Unprivileged containers use a new kernel feature called user namespaces.
The root UID 0 inside the container is mapped to an unprivileged user outside
the container. This means that most security issues (container escape, resource
abuse, etc.) in these containers will affect a random unprivileged user, and
would be a generic kernel security bug rather than an LXC issue. The LXC team
thinks unprivileged containers are safe by design.
This is the default option when creating a new container.
Note
If the container uses systemd as an init system, please be aware the
systemd version running inside the container should be equal to or greater than
220.

Privileged Containers

Security in containers is achieved by using mandatory access control AppArmor
restrictions, seccomp filters and Linux kernel namespaces. The LXC team
considers this kind of container as unsafe, and they will not consider new
container escape exploits to be security issues worthy of a CVE and quick fix.
That’s why privileged containers should only be used in trusted environments.

11.4.2. CPU

[image: screenshot/gui-create-ct-cpu.png]
You can restrict the number of visible CPUs inside the container using the
cores option. This is implemented using the Linux cpuset cgroup
(control group).
A special task inside pvestatd tries to distribute running containers among
available CPUs periodically.
To view the assigned CPUs run the following command:
pct cpusets

 102: 6 7
 105: 2 3 4 5
 108: 0 1

Containers use the host kernel directly. All tasks inside a container are
handled by the host CPU scheduler. Proxmox VE uses the Linux CFS (Completely
Fair Scheduler) scheduler by default, which has additional bandwidth
control options.
	

cpulimit:

	

You can use this option to further limit assigned CPU time.
Please note that this is a floating point number, so it is perfectly valid to
assign two cores to a container, but restrict overall CPU consumption to half a
core.

cores: 2
cpulimit: 0.5

	

cpuunits:

	

This is a relative weight passed to the kernel scheduler. The
larger the number is, the more CPU time this container gets. Number is relative
to the weights of all the other running containers. The default is 100 (or
1024 if the host uses legacy cgroup v1). You can use this setting to
prioritize some containers.

11.4.3. Memory

[image: screenshot/gui-create-ct-memory.png]
Container memory is controlled using the cgroup memory controller.
	

memory:

	

Limit overall memory usage. This corresponds to the
memory.limit_in_bytes cgroup setting.

	

swap:

	

Allows the container to use additional swap memory from the host
swap space. This corresponds to the memory.memsw.limit_in_bytes cgroup
setting, which is set to the sum of both value (memory + swap).

11.4.4. Mount Points

[image: screenshot/gui-create-ct-root-disk.png]
The root mount point is configured with the rootfs property. You can
configure up to 256 additional mount points. The corresponding options are
called mp0 to mp255. They can contain the following settings:
	
rootfs: [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container root. See below for a detailed description of all options.

	
mp[n]: [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container mount point. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume.

	
acl=<boolean>

	
Explicitly enable or disable ACL support.

	
backup=<boolean>

	
Whether to include the mount point in backups (only used for volume mount points).

	
mountoptions=<opt[;opt...]>

	
Extra mount options for rootfs/mps.

	
mp=<Path>

	
Path to the mount point as seen from inside the container.

Note
Must not contain any symlinks for security reasons.

	
quota=<boolean>

	
Enable user quotas inside the container (not supported with zfs subvolumes)

	
replicate=<boolean> (default = 1)

	
Will include this volume to a storage replica job.

	
ro=<boolean>

	
Read-only mount point

	
shared=<boolean> (default = 0)

	
Mark this non-volume mount point as available on all nodes.

Warning
This option does not share the mount point automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Volume size (read only value).

	
volume=<volume>

	
Volume, device or directory to mount into the container.

Currently there are three types of mount points: storage backed mount points,
bind mounts, and device mounts.
Typical container rootfs configuration.

rootfs: thin1:base-100-disk-1,size=8G

Storage Backed Mount Points

Storage backed mount points are managed by the Proxmox VE storage subsystem and come
in three different flavors:
	
Image based: these are raw images containing a single ext4 formatted file
 system.

	
ZFS subvolumes: these are technically bind mounts, but with managed storage,
 and thus allow resizing and snapshotting.

	
Directories: passing size=0 triggers a special case where instead of a raw
 image a directory is created.

Note
The special option syntax STORAGE_ID:SIZE_IN_GB for storage backed
mount point volumes will automatically allocate a volume of the specified size
on the specified storage. For example, calling

pct set 100 -mp0 thin1:10,mp=/path/in/container
will allocate a 10GB volume on the storage thin1 and replace the volume ID
place holder 10 with the allocated volume ID, and setup the moutpoint in the
container at /path/in/container

Bind Mount Points

Bind mounts allow you to access arbitrary directories from your Proxmox VE host
inside a container. Some potential use cases are:
	
Accessing your home directory in the guest

	
Accessing an USB device directory in the guest

	
Accessing an NFS mount from the host in the guest

Bind mounts are considered to not be managed by the storage subsystem, so you
cannot make snapshots or deal with quotas from inside the container. With
unprivileged containers you might run into permission problems caused by the
user mapping and cannot use ACLs.
Note
The contents of bind mount points are not backed up when using vzdump.

Warning
For security reasons, bind mounts should only be established using
source directories especially reserved for this purpose, e.g., a directory
hierarchy under /mnt/bindmounts. Never bind mount system directories like
/, /var or /etc into a container - this poses a great security risk.

Note
The bind mount source path must not contain any symlinks.

For example, to make the directory /mnt/bindmounts/shared accessible in the
container with ID 100 under the path /shared, add a configuration line such as:
mp0: /mnt/bindmounts/shared,mp=/shared
into /etc/pve/lxc/100.conf.
Or alternatively use the pct tool:
pct set 100 -mp0 /mnt/bindmounts/shared,mp=/shared
to achieve the same result.

Device Mount Points

Device mount points allow to mount block devices of the host directly into the
container. Similar to bind mounts, device mounts are not managed by Proxmox VE’s
storage subsystem, but the quota and acl options will be honored.
Note
Device mount points should only be used under special circumstances. In
most cases a storage backed mount point offers the same performance and a lot
more features.

Note
The contents of device mount points are not backed up when using
vzdump.

11.4.5. Network

[image: screenshot/gui-create-ct-network.png]
You can configure up to 10 network interfaces for a single container.
The corresponding options are called net0 to net9, and they can contain the
following setting:
	
net[n]: name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,link_down=<1|0>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]

	
Specifies network interfaces for the container.

	
bridge=<bridge>

	
Bridge to attach the network device to.

	
firewall=<boolean>

	
Controls whether this interface’s firewall rules should be used.

	
gw=<GatewayIPv4>

	
Default gateway for IPv4 traffic.

	
gw6=<GatewayIPv6>

	
Default gateway for IPv6 traffic.

	
hwaddr=<XX:XX:XX:XX:XX:XX>

	
A common MAC address with the I/G (Individual/Group) bit not set.

	
ip=<(IPv4/CIDR|dhcp|manual)>

	
IPv4 address in CIDR format.

	
ip6=<(IPv6/CIDR|auto|dhcp|manual)>

	
IPv6 address in CIDR format.

	
link_down=<boolean>

	
Whether this interface should be disconnected (like pulling the plug).

	
mtu=<integer> (64 - 65535)

	
Maximum transfer unit of the interface. (lxc.network.mtu)

	
name=<string>

	
Name of the network device as seen from inside the container. (lxc.network.name)

	
rate=<mbps>

	
Apply rate limiting to the interface

	
tag=<integer> (1 - 4094)

	
VLAN tag for this interface.

	
trunks=<vlanid[;vlanid...]>

	
VLAN ids to pass through the interface

	
type=<veth>

	
Network interface type.

11.4.6. Automatic Start and Shutdown of Containers

To automatically start a container when the host system boots, select the
option Start at boot in the Options panel of the container in the web
interface or run the following command:
pct set CTID -onboot 1
Start and Shutdown Order.

[image: screenshot/gui-qemu-edit-start-order.png]
If you want to fine tune the boot order of your containers, you can use the
following parameters:
	
Start/Shutdown order: Defines the start order priority. For example, set it
 to 1 if you want the CT to be the first to be started. (We use the reverse
 startup order for shutdown, so a container with a start order of 1 would be
 the last to be shut down)

	
Startup delay: Defines the interval between this container start and
 subsequent containers starts. For example, set it to 240 if you want to wait
 240 seconds before starting other containers.

	
Shutdown timeout: Defines the duration in seconds Proxmox VE should wait
 for the container to be offline after issuing a shutdown command.
 By default this value is set to 60, which means that Proxmox VE will issue a
 shutdown request, wait 60s for the machine to be offline, and if after 60s
 the machine is still online will notify that the shutdown action failed.

Please note that containers without a Start/Shutdown order parameter will
always start after those where the parameter is set, and this parameter only
makes sense between the machines running locally on a host, and not
cluster-wide.
If you require a delay between the host boot and the booting of the first
container, see the section on
Proxmox VE Node Management.

11.4.7. Hookscripts

You can add a hook script to CTs with the config property hookscript.
pct set 100 -hookscript local:snippets/hookscript.pl
It will be called during various phases of the guests lifetime. For an example
and documentation see the example script under
/usr/share/pve-docs/examples/guest-example-hookscript.pl.

11.5. Security Considerations

Containers use the kernel of the host system. This exposes an attack surface
for malicious users. In general, full virtual machines provide better
isolation. This should be considered if containers are provided to unknown or
untrusted people.
To reduce the attack surface, LXC uses many security features like AppArmor,
CGroups and kernel namespaces.
11.5.1. AppArmor

AppArmor profiles are used to restrict access to possibly dangerous actions.
Some system calls, i.e. mount, are prohibited from execution.
To trace AppArmor activity, use:
dmesg | grep apparmor
Although it is not recommended, AppArmor can be disabled for a container. This
brings security risks with it. Some syscalls can lead to privilege escalation
when executed within a container if the system is misconfigured or if a LXC or
Linux Kernel vulnerability exists.
To disable AppArmor for a container, add the following line to the container
configuration file located at /etc/pve/lxc/CTID.conf:
lxc.apparmor.profile = unconfined
Warning
Please note that this is not recommended for production use.

11.5.2. Control Groups (cgroup)

cgroup is a kernel
mechanism used to hierarchically organize processes and distribute system
resources.
The main resources controlled via cgroups are CPU time, memory and swap
limits, and access to device nodes. cgroups are also used to "freeze" a
container before taking snapshots.
There are 2 versions of cgroups currently available,
legacy
and
cgroupv2.
Since Proxmox VE 7.0, the default is a pure cgroupv2 environment. Previously a
"hybrid" setup was used, where resource control was mainly done in cgroupv1
with an additional cgroupv2 controller which could take over some subsystems
via the cgroup_no_v1 kernel command-line parameter. (See the
kernel
parameter documentation for details.)
CGroup Version Compatibility

The main difference between pure cgroupv2 and the old hybrid environments
regarding Proxmox VE is that with cgroupv2 memory and swap are now controlled
independently. The memory and swap settings for containers can map directly to
these values, whereas previously only the memory limit and the limit of the
sum of memory and swap could be limited.
Another important difference is that the devices controller is configured in a
completely different way. Because of this, file system quotas are currently not
supported in a pure cgroupv2 environment.
cgroupv2 support by the container’s OS is needed to run in a pure cgroupv2
environment. Containers running systemd version 231 or newer support
cgroupv2 [49], as do containers not using systemd as init
system [50].
Note
CentOS 7 and Ubuntu 16.10 are two prominent Linux distributions releases,
which have a systemd version that is too old to run in a cgroupv2
environment, you can either
	
Upgrade the whole distribution to a newer release. For the examples above, that
 could be Ubuntu 18.04 or 20.04, and CentOS 8 (or RHEL/CentOS derivatives like
 AlmaLinux or Rocky Linux). This has the benefit to get the newest bug and
 security fixes, often also new features, and moving the EOL date in the future.

	
Upgrade the Containers systemd version. If the distribution provides a
 backports repository this can be an easy and quick stop-gap measurement.

	
Move the container, or its services, to a Virtual Machine. Virtual Machines
 have a much less interaction with the host, that’s why one can install
 decades old OS versions just fine there.

	
Switch back to the legacy cgroup controller. Note that while it can be a
 valid solution, it’s not a permanent one. Starting from Proxmox VE 9.0, the legacy
 controller will not be supported anymore.

Changing CGroup Version

Tip
If file system quotas are not required and all containers support cgroupv2,
it is recommended to stick to the new default.

To switch back to the previous version the following kernel command-line
parameter can be used:
systemd.unified_cgroup_hierarchy=0
See this section on editing the kernel boot
command line on where to add the parameter.

[49] this includes all newest major versions of container
templates shipped by Proxmox VE

[50] for example Alpine Linux

11.6. Guest Operating System Configuration

Proxmox VE tries to detect the Linux distribution in the container, and modifies
some files. Here is a short list of things done at container startup:
	
set /etc/hostname

	
to set the container name

	
modify /etc/hosts

	
to allow lookup of the local hostname

	
network setup

	
pass the complete network setup to the container

	
configure DNS

	
pass information about DNS servers

	
adapt the init system

	
for example, fix the number of spawned getty processes

	
set the root password

	
when creating a new container

	
rewrite ssh_host_keys

	
so that each container has unique keys

	
randomize crontab

	
so that cron does not start at the same time on all containers

Changes made by Proxmox VE are enclosed by comment markers:
--- BEGIN PVE ---
<data>
--- END PVE ---
Those markers will be inserted at a reasonable location in the file. If such a
section already exists, it will be updated in place and will not be moved.
Modification of a file can be prevented by adding a .pve-ignore. file for it.
For instance, if the file /etc/.pve-ignore.hosts exists then the /etc/hosts
file will not be touched. This can be a simple empty file created via:
touch /etc/.pve-ignore.hosts
Most modifications are OS dependent, so they differ between different
distributions and versions. You can completely disable modifications by
manually setting the ostype to unmanaged.
OS type detection is done by testing for certain files inside the
container. Proxmox VE first checks the /etc/os-release file
[51].
If that file is not present, or it does not contain a clearly recognizable
distribution identifier the following distribution specific release files are
checked.
	
Ubuntu

	
inspect /etc/lsb-release (DISTRIB_ID=Ubuntu)

	
Debian

	
test /etc/debian_version

	
Fedora

	
test /etc/fedora-release

	
RedHat or CentOS

	
test /etc/redhat-release

	
ArchLinux

	
test /etc/arch-release

	
Alpine

	
test /etc/alpine-release

	
Gentoo

	
test /etc/gentoo-release

Note
Container start fails if the configured ostype differs from the auto
detected type.

[51] /etc/os-release replaces the multitude of per-distribution
release files https://manpages.debian.org/stable/systemd/os-release.5.en.html

11.7. Container Storage

The Proxmox VE LXC container storage model is more flexible than traditional
container storage models. A container can have multiple mount points. This
makes it possible to use the best suited storage for each application.
For example the root file system of the container can be on slow and cheap
storage while the database can be on fast and distributed storage via a second
mount point. See section Mount Points for further
details.
Any storage type supported by the Proxmox VE storage library can be used. This means
that containers can be stored on local (for example lvm, zfs or directory),
shared external (like iSCSI, NFS) or even distributed storage systems like
Ceph. Advanced storage features like snapshots or clones can be used if the
underlying storage supports them. The vzdump backup tool can use snapshots to
provide consistent container backups.
Furthermore, local devices or local directories can be mounted directly using
bind mounts. This gives access to local resources inside a container with
practically zero overhead. Bind mounts can be used as an easy way to share data
between containers.
11.7.1. FUSE Mounts

Warning
Because of existing issues in the Linux kernel’s freezer subsystem the
usage of FUSE mounts inside a container is strongly advised against, as
containers need to be frozen for suspend or snapshot mode backups.

If FUSE mounts cannot be replaced by other mounting mechanisms or storage
technologies, it is possible to establish the FUSE mount on the Proxmox host
and use a bind mount point to make it accessible inside the container.

11.7.2. Using Quotas Inside Containers

Quotas allow to set limits inside a container for the amount of disk space that
each user can use.
Note
This currently requires the use of legacy cgroups.

Note
This only works on ext4 image based storage types and currently only
works with privileged containers.

Activating the quota option causes the following mount options to be used for
a mount point:
usrjquota=aquota.user,grpjquota=aquota.group,jqfmt=vfsv0
This allows quotas to be used like on any other system. You can initialize the
/aquota.user and /aquota.group files by running:
quotacheck -cmug /
quotaon /
Then edit the quotas using the edquota command. Refer to the documentation of
the distribution running inside the container for details.
Note
You need to run the above commands for every mount point by passing the
mount point’s path instead of just /.

11.7.3. Using ACLs Inside Containers

The standard Posix Access Control Lists are also available inside
containers. ACLs allow you to set more detailed file ownership than the
traditional user/group/others model.

11.7.4. Backup of Container mount points

To include a mount point in backups, enable the backup option for it in the
container configuration. For an existing mount point mp0
mp0: guests:subvol-100-disk-1,mp=/root/files,size=8G
add backup=1 to enable it.
mp0: guests:subvol-100-disk-1,mp=/root/files,size=8G,backup=1
Note
When creating a new mount point in the GUI, this option is enabled by
default.

To disable backups for a mount point, add backup=0 in the way described
above, or uncheck the Backup checkbox on the GUI.

11.7.5. Replication of Containers mount points

By default, additional mount points are replicated when the Root Disk is
replicated. If you want the Proxmox VE storage replication mechanism to skip a mount
point, you can set the Skip replication option for that mount point.
As of Proxmox VE 5.0, replication requires a storage of type zfspool. Adding a
mount point to a different type of storage when the container has replication
configured requires to have Skip replication enabled for that mount point.

11.8. Backup and Restore

11.8.1. Container Backup

It is possible to use the vzdump tool for container backup. Please refer to
the vzdump manual page for details.

11.8.2. Restoring Container Backups

Restoring container backups made with vzdump is possible using the pct
restore command. By default, pct restore will attempt to restore as much of
the backed up container configuration as possible. It is possible to override
the backed up configuration by manually setting container options on the
command line (see the pct manual page for details).
Note
pvesm extractconfig can be used to view the backed up configuration
contained in a vzdump archive.

There are two basic restore modes, only differing by their handling of mount
points:
“Simple” Restore Mode

If neither the rootfs parameter nor any of the optional mpX parameters are
explicitly set, the mount point configuration from the backed up configuration
file is restored using the following steps:
	
Extract mount points and their options from backup

	
Create volumes for storage backed mount points on the storage provided with
 the storage parameter (default: local).

	
Extract files from backup archive

	
Add bind and device mount points to restored configuration (limited to root
 user)

Note
Since bind and device mount points are never backed up, no files are
restored in the last step, but only the configuration options. The assumption
is that such mount points are either backed up with another mechanism (e.g.,
NFS space that is bind mounted into many containers), or not intended to be
backed up at all.

This simple mode is also used by the container restore operations in the web
interface.

“Advanced” Restore Mode

By setting the rootfs parameter (and optionally, any combination of mpX
parameters), the pct restore command is automatically switched into an
advanced mode. This advanced mode completely ignores the rootfs and mpX
configuration options contained in the backup archive, and instead only uses
the options explicitly provided as parameters.
This mode allows flexible configuration of mount point settings at restore
time, for example:
	
Set target storages, volume sizes and other options for each mount point
 individually

	
Redistribute backed up files according to new mount point scheme

	
Restore to device and/or bind mount points (limited to root user)

11.9. Managing Containers with pct

The “Proxmox Container Toolkit” (pct) is the command-line tool to manage
Proxmox VE containers. It enables you to create or destroy containers, as well as
control the container execution (start, stop, reboot, migrate, etc.). It can be
used to set parameters in the config file of a container, for example the
network configuration or memory limits.
11.9.1. CLI Usage Examples

Create a container based on a Debian template (provided you have already
downloaded the template via the web interface)
pct create 100 /var/lib/vz/template/cache/debian-10.0-standard_10.0-1_amd64.tar.gz
Start container 100
pct start 100
Start a login session via getty
pct console 100
Enter the LXC namespace and run a shell as root user
pct enter 100
Display the configuration
pct config 100
Add a network interface called eth0, bridged to the host bridge vmbr0, set
the address and gateway, while it’s running
pct set 100 -net0 name=eth0,bridge=vmbr0,ip=192.168.15.147/24,gw=192.168.15.1
Reduce the memory of the container to 512MB
pct set 100 -memory 512
Destroying a container always removes it from Access Control Lists and it always
removes the firewall configuration of the container. You have to activate
--purge, if you want to additionally remove the container from replication jobs,
backup jobs and HA resource configurations.
pct destroy 100 --purge
Move a mount point volume to a different storage.
pct move-volume 100 mp0 other-storage
Reassign a volume to a different CT. This will remove the volume mp0 from
the source CT and attaches it as mp1 to the target CT. In the background
the volume is being renamed so that the name matches the new owner.
pct move-volume 100 mp0 --target-vmid 200 --target-volume mp1

11.9.2. Obtaining Debugging Logs

In case pct start is unable to start a specific container, it might be
helpful to collect debugging output by passing the --debug flag (replace CTID with
the container’s CTID):
pct start CTID --debug
Alternatively, you can use the following lxc-start command, which will save
the debug log to the file specified by the -o output option:
lxc-start -n CTID -F -l DEBUG -o /tmp/lxc-CTID.log
This command will attempt to start the container in foreground mode, to stop
the container run pct shutdown CTID or pct stop CTID in a second terminal.
The collected debug log is written to /tmp/lxc-CTID.log.
Note
If you have changed the container’s configuration since the last start
attempt with pct start, you need to run pct start at least once to also
update the configuration used by lxc-start.

11.10. Migration

If you have a cluster, you can migrate your Containers with
pct migrate <ctid> <target>
This works as long as your Container is offline. If it has local volumes or
mount points defined, the migration will copy the content over the network to
the target host if the same storage is defined there.
Running containers cannot live-migrated due to technical limitations. You can
do a restart migration, which shuts down, moves and then starts a container
again on the target node. As containers are very lightweight, this results
normally only in a downtime of some hundreds of milliseconds.
A restart migration can be done through the web interface or by using the
--restart flag with the pct migrate command.
A restart migration will shut down the Container and kill it after the
specified timeout (the default is 180 seconds). Then it will migrate the
Container like an offline migration and when finished, it starts the Container
on the target node.

11.11. Configuration

The /etc/pve/lxc/<CTID>.conf file stores container configuration, where
<CTID> is the numeric ID of the given container. Like all other files stored
inside /etc/pve/, they get automatically replicated to all other cluster
nodes.
Note
CTIDs < 100 are reserved for internal purposes, and CTIDs need to be
unique cluster wide.

Example Container Configuration.

ostype: debian
arch: amd64
hostname: www
memory: 512
swap: 512
net0: bridge=vmbr0,hwaddr=66:64:66:64:64:36,ip=dhcp,name=eth0,type=veth
rootfs: local:107/vm-107-disk-1.raw,size=7G

The configuration files are simple text files. You can edit them using a normal
text editor, for example, vi or nano.
This is sometimes useful to do small corrections, but keep in mind that you
need to restart the container to apply such changes.
For that reason, it is usually better to use the pct command to generate and
modify those files, or do the whole thing using the GUI.
Our toolkit is smart enough to instantaneously apply most changes to running
containers. This feature is called “hot plug”, and there is no need to restart
the container in that case.
In cases where a change cannot be hot-plugged, it will be registered as a
pending change (shown in red color in the GUI).
They will only be applied after rebooting the container.
11.11.1. File Format

The container configuration file uses a simple colon separated key/value
format. Each line has the following format:
this is a comment
OPTION: value
Blank lines in those files are ignored, and lines starting with a # character
are treated as comments and are also ignored.
It is possible to add low-level, LXC style configuration directly, for example:
lxc.init_cmd: /sbin/my_own_init
or
lxc.init_cmd = /sbin/my_own_init
The settings are passed directly to the LXC low-level tools.

11.11.2. Snapshots

When you create a snapshot, pct stores the configuration at snapshot time
into a separate snapshot section within the same configuration file. For
example, after creating a snapshot called “testsnapshot”, your configuration
file will look like this:
Container configuration with snapshot.

memory: 512
swap: 512
parent: testsnaphot
...

[testsnaphot]
memory: 512
swap: 512
snaptime: 1457170803
...

There are a few snapshot related properties like parent and snaptime. The
parent property is used to store the parent/child relationship between
snapshots. snaptime is the snapshot creation time stamp (Unix epoch).

11.11.3. Options

	
arch: <amd64 | arm64 | armhf | i386 | riscv32 | riscv64> (default = amd64)

	
OS architecture type.

	
cmode: <console | shell | tty> (default = tty)

	
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).

	
console: <boolean> (default = 1)

	
Attach a console device (/dev/console) to the container.

	
cores: <integer> (1 - 8192)

	
The number of cores assigned to the container. A container can use all available cores by default.

	
cpulimit: <number> (0 - 8192) (default = 0)

	
Limit of CPU usage.

Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.

	
cpuunits: <integer> (0 - 500000) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a container. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this container gets. Number is relative to the weights of all the other running guests.

	
debug: <boolean> (default = 0)

	
Try to be more verbose. For now this only enables debug log-level on start.

	
description: <string>

	
Description for the Container. Shown in the web-interface CT’s summary. This is saved as comment inside the configuration file.

	
dev[n]: [[path=]<Path>] [,gid=<integer>] [,mode=<Octal access mode>] [,uid=<integer>]

	
Device to pass through to the container

	
gid=<integer> (0 - N)

	
Group ID to be assigned to the device node

	
mode=<Octal access mode>

	
Access mode to be set on the device node

	
path=<Path>

	
Path to the device to pass through to the container

	
uid=<integer> (0 - N)

	
User ID to be assigned to the device node

	
features: [force_rw_sys=<1|0>] [,fuse=<1|0>] [,keyctl=<1|0>] [,mknod=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]

	
Allow containers access to advanced features.

	
force_rw_sys=<boolean> (default = 0)

	
Mount /sys in unprivileged containers as rw instead of mixed. This can break networking under newer (>= v245) systemd-network use.

	
fuse=<boolean> (default = 0)

	
Allow using fuse file systems in a container. Note that interactions between fuse and the freezer cgroup can potentially cause I/O deadlocks.

	
keyctl=<boolean> (default = 0)

	
For unprivileged containers only: Allow the use of the keyctl() system call. This is required to use docker inside a container. By default unprivileged containers will see this system call as non-existent. This is mostly a workaround for systemd-networkd, as it will treat it as a fatal error when some keyctl() operations are denied by the kernel due to lacking permissions. Essentially, you can choose between running systemd-networkd or docker.

	
mknod=<boolean> (default = 0)

	
Allow unprivileged containers to use mknod() to add certain device nodes. This requires a kernel with seccomp trap to user space support (5.3 or newer). This is experimental.

	
mount=<fstype;fstype;...>

	
Allow mounting file systems of specific types. This should be a list of file system types as used with the mount command. Note that this can have negative effects on the container’s security. With access to a loop device, mounting a file can circumvent the mknod permission of the devices cgroup, mounting an NFS file system can block the host’s I/O completely and prevent it from rebooting, etc.

	
nesting=<boolean> (default = 0)

	
Allow nesting. Best used with unprivileged containers with additional id mapping. Note that this will expose procfs and sysfs contents of the host to the guest.

	
hookscript: <string>

	
Script that will be exectued during various steps in the containers lifetime.

	
hostname: <string>

	
Set a host name for the container.

	
lock: <backup | create | destroyed | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>

	
Lock/unlock the container.

	
memory: <integer> (16 - N) (default = 512)

	
Amount of RAM for the container in MB.

	
mp[n]: [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container mount point. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume.

	
acl=<boolean>

	
Explicitly enable or disable ACL support.

	
backup=<boolean>

	
Whether to include the mount point in backups (only used for volume mount points).

	
mountoptions=<opt[;opt...]>

	
Extra mount options for rootfs/mps.

	
mp=<Path>

	
Path to the mount point as seen from inside the container.

Note
Must not contain any symlinks for security reasons.

	
quota=<boolean>

	
Enable user quotas inside the container (not supported with zfs subvolumes)

	
replicate=<boolean> (default = 1)

	
Will include this volume to a storage replica job.

	
ro=<boolean>

	
Read-only mount point

	
shared=<boolean> (default = 0)

	
Mark this non-volume mount point as available on all nodes.

Warning
This option does not share the mount point automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Volume size (read only value).

	
volume=<volume>

	
Volume, device or directory to mount into the container.

	
nameserver: <string>

	
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
net[n]: name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,link_down=<1|0>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]

	
Specifies network interfaces for the container.

	
bridge=<bridge>

	
Bridge to attach the network device to.

	
firewall=<boolean>

	
Controls whether this interface’s firewall rules should be used.

	
gw=<GatewayIPv4>

	
Default gateway for IPv4 traffic.

	
gw6=<GatewayIPv6>

	
Default gateway for IPv6 traffic.

	
hwaddr=<XX:XX:XX:XX:XX:XX>

	
A common MAC address with the I/G (Individual/Group) bit not set.

	
ip=<(IPv4/CIDR|dhcp|manual)>

	
IPv4 address in CIDR format.

	
ip6=<(IPv6/CIDR|auto|dhcp|manual)>

	
IPv6 address in CIDR format.

	
link_down=<boolean>

	
Whether this interface should be disconnected (like pulling the plug).

	
mtu=<integer> (64 - 65535)

	
Maximum transfer unit of the interface. (lxc.network.mtu)

	
name=<string>

	
Name of the network device as seen from inside the container. (lxc.network.name)

	
rate=<mbps>

	
Apply rate limiting to the interface

	
tag=<integer> (1 - 4094)

	
VLAN tag for this interface.

	
trunks=<vlanid[;vlanid...]>

	
VLAN ids to pass through the interface

	
type=<veth>

	
Network interface type.

	
onboot: <boolean> (default = 0)

	
Specifies whether a container will be started during system bootup.

	
ostype: <alpine | archlinux | centos | debian | devuan | fedora | gentoo | nixos | opensuse | ubuntu | unmanaged>

	
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.

	
protection: <boolean> (default = 0)

	
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.

	
rootfs: [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container root.

	
acl=<boolean>

	
Explicitly enable or disable ACL support.

	
mountoptions=<opt[;opt...]>

	
Extra mount options for rootfs/mps.

	
quota=<boolean>

	
Enable user quotas inside the container (not supported with zfs subvolumes)

	
replicate=<boolean> (default = 1)

	
Will include this volume to a storage replica job.

	
ro=<boolean>

	
Read-only mount point

	
shared=<boolean> (default = 0)

	
Mark this non-volume mount point as available on all nodes.

Warning
This option does not share the mount point automatically, it assumes it is shared already!

	
size=<DiskSize>

	
Volume size (read only value).

	
volume=<volume>

	
Volume, device or directory to mount into the container.

	
searchdomain: <string>

	
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
startup: `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
swap: <integer> (0 - N) (default = 512)

	
Amount of SWAP for the container in MB.

	
tags: <string>

	
Tags of the Container. This is only meta information.

	
template: <boolean> (default = 0)

	
Enable/disable Template.

	
timezone: <string>

	
Time zone to use in the container. If option isn’t set, then nothing will be done. Can be set to host to match the host time zone, or an arbitrary time zone option from /usr/share/zoneinfo/zone.tab

	
tty: <integer> (0 - 6) (default = 2)

	
Specify the number of tty available to the container

	
unprivileged: <boolean> (default = 0)

	
Makes the container run as unprivileged user. (Should not be modified manually.)

	
unused[n]: [volume=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

	
volume=<volume>

	
The volume that is not used currently.

11.12. Locks

Container migrations, snapshots and backups (vzdump) set a lock to prevent
incompatible concurrent actions on the affected container. Sometimes you need
to remove such a lock manually (e.g., after a power failure).
pct unlock <CTID>
Caution
Only do this if you are sure the action which set the lock is no
longer running.

Chapter 12. Software-Defined Network

The Software-Defined Network (SDN) feature in Proxmox VE enables the
creation of virtual zones and networks (VNets). This functionality simplifies
advanced networking configurations and multitenancy setup.

12.1. Introduction

The Proxmox VE SDN allows for separation and fine-grained control of virtual guest
networks, using flexible, software-controlled configurations.
Separation is managed through zones, virtual networks (VNets), and
subnets. A zone is its own virtually separated network area. A VNet is a
virtual network that belongs to a zone. A subnet is an IP range inside a VNet.
Depending on the type of the zone, the network behaves differently and offers
specific features, advantages, and limitations.
Use cases for SDN range from an isolated private network on each individual node
to complex overlay networks across multiple PVE clusters on different locations.
After configuring an VNet in the cluster-wide datacenter SDN administration
interface, it is available as a common Linux bridge, locally on each node, to be
assigned to VMs and Containers.

12.2. Support Status

12.2.1. History

The Proxmox VE SDN stack has been available as an experimental feature since 2019 and
has been continuously improved and tested by many developers and users.
With its integration into the web interface in Proxmox VE 6.2, a significant
milestone towards broader integration was achieved.
During the Proxmox VE 7 release cycle, numerous improvements and features were added.
Based on user feedback, it became apparent that the fundamental design choices
and their implementation were quite sound and stable. Consequently, labeling it
as ‘experimental’ did not do justice to the state of the SDN stack.
For Proxmox VE 8, a decision was made to lay the groundwork for full integration of
the SDN feature by elevating the management of networks and interfaces to a core
component in the Proxmox VE access control stack.
In Proxmox VE 8.1, two major milestones were achieved: firstly, DHCP integration was
added to the IP address management (IPAM) feature, and secondly, the SDN
integration is now installed by default.

12.2.2. Current Status

The current support status for the various layers of our SDN installation is as
follows:
	
Core SDN, which includes VNet management and its integration with the Proxmox VE
 stack, is fully supported.

	
IPAM, including DHCP management for virtual guests, is in tech preview.

	
Complex routing via FRRouting and controller integration are in tech preview.

12.3. Installation

12.3.1. SDN Core

Since Proxmox VE 8.1 the core Software-Defined Network (SDN) packages are installed
by default.
If you upgrade from an older version, you need to install the
libpve-network-perl package on every node:
apt update
apt install libpve-network-perl
Note
Proxmox VE version 7.0 and above have the ifupdown2 package installed by
default. If you originally installed your system with an older version, you need
to explicitly install the ifupdown2 package.

After installation, you need to ensure that the following line is present at the
end of the /etc/network/interfaces configuration file on all nodes, so that
the SDN configuration gets included and activated.
source /etc/network/interfaces.d/*

12.3.2. DHCP IPAM

The DHCP integration into the built-in PVE IP Address Management stack
currently uses dnsmasq for giving out DHCP leases. This is currently opt-in.
To use that feature you need to install the dnsmasq package on every node:
apt update
apt install dnsmasq
disable default instance
systemctl disable --now dnsmasq

12.3.3. FRRouting

The Proxmox VE SDN stack uses the FRRouting project for
advanced setups. This is currently opt-in.
To use the SDN routing integration you need to install the frr-pythontools
package on all nodes:
apt update
apt install frr-pythontools

12.4. Configuration Overview

Configuration is done at the web UI at datacenter level, separated into the
following sections:
	
SDN:: Here you get an overview of the current active SDN state, and you can
 apply all pending changes to the whole cluster.

	
Zones: Create and manage the virtually separated
 network zones

	
VNets VNets: Create virtual network bridges and
 manage subnets

The Options category allows adding and managing additional services to be used
in your SDN setup.
	
Controllers: For controlling layer 3 routing
 in complex setups

	
DHCP: Define a DHCP server for a zone that automatically allocates IPs for
 guests in the IPAM and leases them to the guests via DHCP.

	
IPAM: Enables external for IP address management for
 guests

	
DNS: Define a DNS server integration for registering
 virtual guests' hostname and IP addresses

12.5. Technology & Configuration

The Proxmox VE Software-Defined Network implementation uses standard Linux networking
as much as possible. The reason for this is that modern Linux networking
provides almost all needs for a feature full SDN implementation and avoids adding
external dependencies and reduces the overall amount of components that can
break.
The Proxmox VE SDN configurations are located in /etc/pve/sdn, which is shared with
all other cluster nodes through the Proxmox VE configuration file system.
Those configurations get translated to the respective configuration formats of
the tools that manage the underlying network stack (for example ifupdown2 or
frr).
New changes are not immediately applied but recorded as pending first. You can
then apply a set of different changes all at once in the main SDN overview
panel on the web interface. This system allows to roll-out various changes as
single atomic one.
The SDN tracks the rolled-out state through the .running-config and .version
files located in /etc/pve/sdn.

12.6. Zones

A zone defines a virtually separated network. Zones are restricted to
specific nodes and assigned permissions, in order to restrict users to a certain
zone and its contained VNets.
Different technologies can be used for separation:
	
Simple: Isolated Bridge. A simple layer 3 routing bridge (NAT)

	
VLAN: Virtual LANs are the classic method of subdividing a LAN

	
QinQ: Stacked VLAN (formally known as IEEE 802.1ad)

	
VXLAN: Layer 2 VXLAN network via a UDP tunnel

	
EVPN (BGP EVPN): VXLAN with BGP to establish Layer 3 routing

12.6.1. Common Options

The following options are available for all zone types:
	
Nodes

	
The nodes which the zone and associated VNets should be deployed on.

	
IPAM

	
Use an IP Address Management (IPAM) tool to manage IPs in the
 zone. Optional, defaults to pve.

	
DNS

	
DNS API server. Optional.

	
ReverseDNS

	
Reverse DNS API server. Optional.

	
DNSZone

	
DNS domain name. Used to register hostnames, such as
 <hostname>.<domain>. The DNS zone must already exist on the DNS server. Optional.

12.6.2. Simple Zones

This is the simplest plugin. It will create an isolated VNet bridge. This
bridge is not linked to a physical interface, and VM traffic is only local on
each the node.
It can be used in NAT or routed setups.

12.6.3. VLAN Zones

The VLAN plugin uses an existing local Linux or OVS bridge to connect to the
node’s physical interface. It uses VLAN tagging defined in the VNet to isolate
the network segments. This allows connectivity of VMs between different nodes.
VLAN zone configuration options:
	
Bridge

	
The local bridge or OVS switch, already configured on each node that
 allows node-to-node connection.

12.6.4. QinQ Zones

QinQ also known as VLAN stacking, that uses multiple layers of VLAN tags for
isolation. The QinQ zone defines the outer VLAN tag (the Service VLAN)
whereas the inner VLAN tag is defined by the VNet.
Note
Your physical network switches must support stacked VLANs for this
configuration.

QinQ zone configuration options:
	
Bridge

	
A local, VLAN-aware bridge that is already configured on each local
 node

	
Service VLAN

	
The main VLAN tag of this zone

	
Service VLAN Protocol

	
Allows you to choose between an 802.1q (default) or
 802.1ad service VLAN type.

	
MTU

	
Due to the double stacking of tags, you need 4 more bytes for QinQ VLANs.
 For example, you must reduce the MTU to 1496 if you physical interface MTU is
 1500.

12.6.5. VXLAN Zones

The VXLAN plugin establishes a tunnel (overlay) on top of an existing network
(underlay). This encapsulates layer 2 Ethernet frames within layer 4 UDP
datagrams using the default destination port 4789.
You have to configure the underlay network yourself to enable UDP connectivity
between all peers.
You can, for example, create a VXLAN overlay network on top of public internet,
appearing to the VMs as if they share the same local Layer 2 network.
Warning
VXLAN on its own does does not provide any encryption. When joining
 multiple sites via VXLAN, make sure to establish a secure connection between
 the site, for example by using a site-to-site VPN.

VXLAN zone configuration options:
	
Peers Address List

	
A list of IP addresses of each node in the VXLAN zone. This
 can be external nodes reachable at this IP address.
 All nodes in the cluster need to be mentioned here.

	
MTU

	
Because VXLAN encapsulation uses 50 bytes, the MTU needs to be 50 bytes
 lower than the outgoing physical interface.

12.6.6. EVPN Zones

The EVPN zone creates a routable Layer 3 network, capable of spanning across
multiple clusters. This is achieved by establishing a VPN and utilizing BGP as
the routing protocol.
The VNet of EVPN can have an anycast IP address and/or MAC address. The bridge
IP is the same on each node, meaning a virtual guest can use this address as
gateway.
Routing can work across VNets from different zones through a VRF (Virtual
Routing and Forwarding) interface.
EVPN zone configuration options:
	
VRF VXLAN ID

	
A VXLAN-ID used for dedicated routing interconnect between VNets.
 It must be different than the VXLAN-ID of the VNets.

	
Controller

	
The EVPN-controller to use for this zone. (See controller plugins
 section).

	
VNet MAC Address

	
Anycast MAC address that gets assigned to all VNets in this
 zone. Will be auto-generated if not defined.

	
Exit Nodes

	
Nodes that shall be configured as exit gateways from the EVPN
 network, through the real network. The configured nodes will announce a
 default route in the EVPN network. Optional.

	
Primary Exit Node

	
If you use multiple exit nodes, force traffic through this
 primary exit node, instead of load-balancing on all nodes. Optional but
 necessary if you want to use SNAT or if your upstream router doesn’t support
 ECMP.

	
Exit Nodes Local Routing

	
This is a special option if you need to reach a VM/CT
 service from an exit node. (By default, the exit nodes only allow forwarding
 traffic between real network and EVPN network). Optional.

	
Advertise Subnets

	
Announce the full subnet in the EVPN network.
 If you have silent VMs/CTs (for example, if you have multiple IPs and the
 anycast gateway doesn’t see traffic from theses IPs, the IP addresses won’t be
 able to be reached inside the EVPN network). Optional.

	
Disable ARP ND Suppression

	
Don’t suppress ARP or ND (Neighbor Discovery)
 packets. This is required if you use floating IPs in your VMs (IP and MAC
 addresses are being moved between systems). Optional.

	
Route-target Import

	
Allows you to import a list of external EVPN route
 targets. Used for cross-DC or different EVPN network interconnects. Optional.

	
MTU

	
Because VXLAN encapsulation uses 50 bytes, the MTU needs to be 50 bytes
 less than the maximal MTU of the outgoing physical interface. Optional,
 defaults to 1450.

12.7. VNets

After creating a virtual network (VNet) through the SDN GUI, a local network
interface with the same name is available on each node. To connect a guest to the
VNet, assign the interface to the guest and set the IP address accordingly.
Depending on the zone, these options have different meanings and are explained
in the respective zone section in this document.
Warning
In the current state, some options may have no effect or won’t work in
certain zones.

VNet configuration options:
	
ID

	
An up to 8 character ID to identify a VNet

	
Comment

	
More descriptive identifier. Assigned as an alias on the interface. Optional

	
Zone

	
The associated zone for this VNet

	
Tag

	
The unique VLAN or VXLAN ID

	
VLAN Aware

	
Enables vlan-aware option on the interface, enabling configuration
 in the guest.

12.8. Subnets

A subnet define a specific IP range, described by the CIDR network address.
Each VNet, can have one or more subnets.
A subnet can be used to:
	
Restrict the IP addresses you can define on a specific VNet

	
Assign routes/gateways on a VNet in layer 3 zones

	
Enable SNAT on a VNet in layer 3 zones

	
Auto assign IPs on virtual guests (VM or CT) through IPAM plugins

	
DNS registration through DNS plugins

If an IPAM server is associated with the subnet zone, the subnet prefix will be
automatically registered in the IPAM.
Subnet configuration options:
	
ID

	
A CIDR network address, for example 10.0.0.0/8

	
Gateway

	
The IP address of the network’s default gateway. On layer 3 zones
 (Simple/EVPN plugins), it will be deployed on the VNet.

	
SNAT

	
Enable Source NAT which allows VMs from inside a
 VNet to connect to the outside network by forwarding the packets to the nodes
 outgoing interface. On EVPN zones, forwarding is done on EVPN gateway-nodes.
 Optional.

	
DNS Zone Prefix

	
Add a prefix to the domain registration, like
 <hostname>.prefix.<domain> Optional.

12.9. Controllers

Some zones implement a separated control and data plane that require an external
controller to manage the VNet’s control plane.
Currently, only the EVPN zone requires an external controller.
12.9.1. EVPN Controller

The EVPN, zone requires an external controller to manage the control plane.
The EVPN controller plugin configures the Free Range Routing (frr) router.
To enable the EVPN controller, you need to install frr on every node that shall
participate in the EVPN zone.
apt install frr frr-pythontools
EVPN controller configuration options:
	
ASN #

	
A unique BGP ASN number. It’s highly recommended to use a private ASN
 number (64512 – 65534, 4200000000 – 4294967294), as otherwise you could end up
 breaking global routing by mistake.

	
Peers

	
An IP list of all nodes that are part of the EVPN zone. (could also be
 external nodes or route reflector servers)

12.9.2. BGP Controller

The BGP controller is not used directly by a zone.
You can use it to configure FRR to manage BGP peers.
For BGP-EVPN, it can be used to define a different ASN by node, so doing EBGP.
It can also be used to export EVPN routes to an external BGP peer.
Note
By default, for a simple full mesh EVPN, you don’t need to define a BGP
controller.

BGP controller configuration options:
	
Node

	
The node of this BGP controller

	
ASN #

	
A unique BGP ASN number. It’s highly recommended to use a private ASN
 number in the range (64512 - 65534) or (4200000000 - 4294967294), as otherwise
 you could break global routing by mistake.

	
Peer

	
A list of peer IP addresses you want to communicate with using the
 underlying BGP network.

	
EBGP

	
If your peer’s remote-AS is different, this enables EBGP.

	
Loopback Interface

	
Use a loopback or dummy interface as the source of the EVPN network
 (for multipath).

	
ebgp-mutltihop

	
Increase the number of hops to reach peers, in case they are
 not directly connected or they use loopback.

	
bgp-multipath-as-path-relax

	
Allow ECMP if your peers have different ASN.

12.9.3. ISIS Controller

The ISIS controller is not used directly by a zone.
You can use it to configure FRR to export EVPN routes to an ISIS domain.
ISIS controller configuration options:
	
Node

	
The node of this ISIS controller.

	
Domain

	
A unique ISIS domain.

	
Network Entity Title

	
A Unique ISIS network address that identifies this node.

	
Interfaces

	
A list of physical interface(s) used by ISIS.

	
Loopback

	
Use a loopback or dummy interface as the source of the EVPN network
 (for multipath).

12.10. IPAM

IP Address Management (IPAM) tools manage the IP addresses of clients on the
network. SDN in Proxmox VE uses IPAM for example to find free IP addresses for new
guests.
A single IPAM instance can be associated with one or more zones.
12.10.1. PVE IPAM Plugin

The default built-in IPAM for your Proxmox VE cluster.
You can inspect the current status of the PVE IPAM Plugin via the IPAM panel in
the SDN section of the datacenter configuration. This UI can be used to create,
update and delete IP mappings. This is particularly convenient in conjunction
with the DHCP feature.
If you are using DHCP, you can use the IPAM panel to create or edit leases for
specific VMs, which enables you to change the IPs allocated via DHCP. When
editing an IP of a VM that is using DHCP you must make sure to force the guest
to acquire a new DHCP leases. This can usually be done by reloading the network
stack of the guest or rebooting it.

12.10.2. NetBox IPAM Plugin

NetBox is an open-source IP
Address Management (IPAM) and datacenter infrastructure management (DCIM) tool.
To integrate NetBox with Proxmox VE SDN, create an API token in NetBox as described
here: https://docs.netbox.dev/en/stable/integrations/rest-api/#tokens
The NetBox configuration properties are:
	
URL

	
The NetBox REST API endpoint: http://yournetbox.domain.com/api

	
Token

	
An API access token

12.10.3. phpIPAM Plugin

In phpIPAM you need to create an "application" and add
an API token with admin privileges to the application.
The phpIPAM configuration properties are:
	
URL

	
The REST-API endpoint: http://phpipam.domain.com/api/<appname>/

	
Token

	
An API access token

	
Section

	
An integer ID. Sections are a group of subnets in phpIPAM. Default
 installations use sectionid=1 for customers.

12.11. DNS

The DNS plugin in Proxmox VE SDN is used to define a DNS API server for registration
of your hostname and IP address. A DNS configuration is associated with one or
more zones, to provide DNS registration for all the subnet IPs configured for
a zone.
12.11.1. PowerDNS Plugin

https://doc.powerdns.com/authoritative/http-api/index.html
You need to enable the web server and the API in your PowerDNS config:
api=yes
api-key=arandomgeneratedstring
webserver=yes
webserver-port=8081
The PowerDNS configuration options are:
	
url

	
The REST API endpoint: http://yourpowerdnserver.domain.com:8081/api/v1/servers/localhost

	
key

	
An API access key

	
ttl

	
The default TTL for records

12.12. DHCP

The DHCP plugin in Proxmox VE SDN can be used to automatically deploy a DHCP server
for a Zone. It provides DHCP for all Subnets in a Zone that have a DHCP range
configured. Currently the only available backend plugin for DHCP is the dnsmasq
plugin.
The DHCP plugin works by allocating an IP in the IPAM plugin configured in the
Zone when adding a new network interface to a VM/CT. You can find more
information on how to configure an IPAM in the
respective section of our documentation.
When the VM starts, a mapping for the MAC address and IP gets created in the DHCP
plugin of the zone. When the network interfaces is removed or the VM/CT are
destroyed, then the entry in the IPAM and the DHCP server are deleted as well.
Note
Some features (adding/editing/removing IP mappings) are currently only
available when using the PVE IPAM plugin.

12.12.1. Configuration

You can enable automatic DHCP for a zone in the Web UI via the Zones panel and
enabling DHCP in the advanced options of a zone.
Note
Currently only Simple Zones have support for automatic DHCP

After automatic DHCP has been enabled for a Zone, DHCP Ranges need to be
configured for the subnets in a Zone. In order to that, go to the Vnets panel and
select the Subnet for which you want to configure DHCP ranges. In the edit
dialogue you can configure DHCP ranges in the respective Tab. Alternatively you
can set DHCP ranges for a Subnet via the following CLI command:
pvesh set /cluster/sdn/vnets/<vnet>/subnets/<subnet>
 -dhcp-range start-address=10.0.1.100,end-address=10.0.1.200
 -dhcp-range start-address=10.0.2.100,end-address=10.0.2.200
You also need to have a gateway configured for the subnet - otherwise
automatic DHCP will not work.
The DHCP plugin will then allocate IPs in the IPAM only in the configured
ranges.
Do not forget to follow the installation steps for the
dnsmasq DHCP plugin as well.

12.12.2. Plugins

Dnsmasq Plugin

Currently this is the only DHCP plugin and therefore the plugin that gets used
when you enable DHCP for a zone.
Installation. For installation see the DHCP IPAM section.
Configuration. The plugin will create a new systemd service for each zone that dnsmasq gets
deployed to. The name for the service is dnsmasq@<zone>. The lifecycle of this
service is managed by the DHCP plugin.
The plugin automatically generates the following configuration files in the
folder /etc/dnsmasq.d/<zone>:
	
00-default.conf

	
This contains the default global configuration for a dnsmasq instance.

	
10-<zone>-<subnet_cidr>.conf

	
This file configures specific options for a subnet, such as the DNS server that
should get configured via DHCP.

	
10-<zone>-<subnet_cidr>.ranges.conf

	
This file configures the DHCP ranges for the dnsmasq instance.

	
ethers

	
This file contains the MAC-address and IP mappings from the IPAM plugin. In
order to override those mappings, please use the respective IPAM plugin rather
than editing this file, as it will get overwritten by the dnsmasq plugin.

You must not edit any of the above files, since they are managed by the DHCP
plugin. In order to customize the dnsmasq configuration you can create
additional files (e.g. 90-custom.conf) in the configuration folder - they will
not get changed by the dnsmasq DHCP plugin.
Configuration files are read in order, so you can control the order of the
configuration directives by naming your custom configuration files appropriately.
DHCP leases are stored in the file /var/lib/misc/dnsmasq.<zone>.leases.
When using the PVE IPAM plugin, you can update, create and delete DHCP leases.
For more information please consult the documentation of
the PVE IPAM plugin. Changing DHCP leases is
currently not supported for the other IPAM plugins.

12.13. Examples

This section presents multiple configuration examples tailored for common SDN
use cases. It aims to offer tangible implementations, providing additional
details to enhance comprehension of the available configuration options.
12.13.1. Simple Zone Example

Simple zone networks create an isolated network for guests on a single host to
connect to each other.
Tip
connection between guests are possible if all guests reside on a same host
but cannot be reached on other nodes.

	
Create a simple zone named simple.

	
Add a VNet names vnet1.

	
Create a Subnet with a gateway and the SNAT option enabled.

	
This creates a network bridge vnet1 on the node. Assign this bridge to the
 guests that shall join the network and configure an IP address.

The network interface configuration in two VMs may look like this which allows
them to communicate via the 10.0.1.0/24 network.
allow-hotplug ens19
iface ens19 inet static
 address 10.0.1.14/24
allow-hotplug ens19
iface ens19 inet static
 address 10.0.1.15/24

12.13.2. Source NAT Example

If you want to allow outgoing connections for guests in the simple network zone
the simple zone offers a Source NAT (SNAT) option.
Starting from the configuration above, Add a
Subnet to the VNet vnet1, set a gateway IP and enable the SNAT option.
Subnet: 172.16.0.0/24
Gateway: 172.16.0.1
SNAT: checked
In the guests configure the static IP address inside the subnet’s IP range.
The node itself will join this network with the Gateway IP 172.16.0.1 and
function as the NAT gateway for guests within the subnet range.

12.13.3. VLAN Setup Example

When VMs on different nodes need to communicate through an isolated network, the
VLAN zone allows network level isolation using VLAN tags.
Create a VLAN zone named myvlanzone:
ID: myvlanzone
Bridge: vmbr0
Create a VNet named myvnet1 with VLAN tag 10 and the previously created
myvlanzone.
ID: myvnet1
Zone: myvlanzone
Tag: 10
Apply the configuration through the main SDN panel, to create VNets locally on
each node.
Create a Debian-based virtual machine (vm1) on node1, with a vNIC on myvnet1.
Use the following network configuration for this VM:
auto eth0
iface eth0 inet static
 address 10.0.3.100/24
Create a second virtual machine (vm2) on node2, with a vNIC on the same VNet
myvnet1 as vm1.
Use the following network configuration for this VM:
auto eth0
iface eth0 inet static
 address 10.0.3.101/24
Following this, you should be able to ping between both VMs using that network.

12.13.4. QinQ Setup Example

This example configures two QinQ zones and adds two VMs to each zone to
demonstrate the additional layer of VLAN tags which allows the configuration of
more isolated VLANs.
A typical use case for this configuration is a hosting provider that provides an
isolated network to customers for VM communication but isolates the VMs from
other customers.
Create a QinQ zone named qinqzone1 with service VLAN 20
ID: qinqzone1
Bridge: vmbr0
Service VLAN: 20
Create another QinQ zone named qinqzone2 with service VLAN 30
ID: qinqzone2
Bridge: vmbr0
Service VLAN: 30
Create a VNet named myvnet1 with VLAN-ID 100 on the previously created
qinqzone1 zone.
ID: qinqvnet1
Zone: qinqzone1
Tag: 100
Create a myvnet2 with VLAN-ID 100 on the qinqzone2 zone.
ID: qinqvnet2
Zone: qinqzone2
Tag: 100
Apply the configuration on the main SDN web interface panel to create VNets
locally on each node.
Create four Debian-bases virtual machines (vm1, vm2, vm3, vm4) and add network
interfaces to vm1 and vm2 with bridge qinqvnet1 and vm3 and vm4 with bridge
qinqvnet2.
Inside the VM, configure the IP addresses of the interfaces, for example via
/etc/network/interfaces:
auto eth0
iface eth0 inet static
 address 10.0.3.101/24
Configure all four VMs to have IP addresses from the 10.0.3.101 to
10.0.3.104 range.
Now you should be able to ping between the VMs vm1 and vm2, as well as
between vm3 and vm4. However, neither of VMs vm1 or vm2 can ping VMs
vm3 or vm4, as they are on a different zone with a different service-VLAN.

12.13.5. VXLAN Setup Example

The example assumes a cluster with three nodes, with the node IP addresses
192.168.0.1, 192.168.0.2 and 192.168.0.3.
Create a VXLAN zone named myvxlanzone and add all IPs from the nodes to the
peer address list. Use the default MTU of 1450 or configure accordingly.
ID: myvxlanzone
Peers Address List: 192.168.0.1,192.168.0.2,192.168.0.3
Create a VNet named vxvnet1 using the VXLAN zone myvxlanzone created
previously.
ID: vxvnet1
Zone: myvxlanzone
Tag: 100000
Apply the configuration on the main SDN web interface panel to create VNets
locally on each nodes.
Create a Debian-based virtual machine (vm1) on node1, with a vNIC on vxvnet1.
Use the following network configuration for this VM (note the lower MTU).
auto eth0
iface eth0 inet static
 address 10.0.3.100/24
 mtu 1450
Create a second virtual machine (vm2) on node3, with a vNIC on the same VNet
vxvnet1 as vm1.
Use the following network configuration for this VM:
auto eth0
iface eth0 inet static
 address 10.0.3.101/24
 mtu 1450
Then, you should be able to ping between between vm1 and vm2.

12.13.6. EVPN Setup Example

The example assumes a cluster with three nodes (node1, node2, node3) with IP
addresses 192.168.0.1, 192.168.0.2 and 192.168.0.3.
Create an EVPN controller, using a private ASN number and the above node
addresses as peers.
ID: myevpnctl
ASN#: 65000
Peers: 192.168.0.1,192.168.0.2,192.168.0.3
Create an EVPN zone named myevpnzone, assign the previously created
EVPN-controller and define node1 and node2 as exit nodes.
ID: myevpnzone
VRF VXLAN Tag: 10000
Controller: myevpnctl
MTU: 1450
VNet MAC Address: 32:F4:05:FE:6C:0A
Exit Nodes: node1,node2
Create the first VNet named myvnet1 using the EVPN zone myevpnzone.
ID: myvnet1
Zone: myevpnzone
Tag: 11000
Create a subnet on myvnet1:
Subnet: 10.0.1.0/24
Gateway: 10.0.1.1
Create the second VNet named myvnet2 using the same EVPN zone myevpnzone.
ID: myvnet2
Zone: myevpnzone
Tag: 12000
Create a different subnet on myvnet2`:
Subnet: 10.0.2.0/24
Gateway: 10.0.2.1
Apply the configuration from the main SDN web interface panel to create VNets
locally on each node and generate the FRR configuration.
Create a Debian-based virtual machine (vm1) on node1, with a vNIC on myvnet1.
Use the following network configuration for vm1:
auto eth0
iface eth0 inet static
 address 10.0.1.100/24
 gateway 10.0.1.1
 mtu 1450
Create a second virtual machine (vm2) on node2, with a vNIC on the other VNet
myvnet2.
Use the following network configuration for vm2:
auto eth0
iface eth0 inet static
 address 10.0.2.100/24
 gateway 10.0.2.1
 mtu 1450
Now you should be able to ping vm2 from vm1, and vm1 from vm2.
If you ping an external IP from vm2 on the non-gateway node3, the packet
will go to the configured myvnet2 gateway, then will be routed to the exit
nodes (node1 or node2) and from there it will leave those nodes over the
default gateway configured on node1 or node2.
Note
You need to add reverse routes for the 10.0.1.0/24 and 10.0.2.0/24
networks to node1 and node2 on your external gateway, so that the public network
can reply back.

If you have configured an external BGP router, the BGP-EVPN routes (10.0.1.0/24
and 10.0.2.0/24 in this example), will be announced dynamically.

12.14. Notes

12.14.1. Multiple EVPN Exit Nodes

If you have multiple gateway nodes, you should disable the rp_filter (Strict
Reverse Path Filter) option, because packets can arrive at one node but go out
from another node.
Add the following to /etc/sysctl.conf:
net.ipv4.conf.default.rp_filter=0
net.ipv4.conf.all.rp_filter=0

12.14.2. VXLAN IPSEC Encryption

To add IPSEC encryption on top of a VXLAN, this example shows how to use
strongswan.
You`ll need to reduce the MTU by additional 60 bytes for IPv4 or 80 bytes for
IPv6 to handle encryption.
So with default real 1500 MTU, you need to use a MTU of 1370 (1370 + 80 (IPSEC)
+ 50 (VXLAN) == 1500).
Install strongswan on the host.
apt install strongswan
Add configuration to /etc/ipsec.conf. We only need to encrypt traffic from
the VXLAN UDP port 4789.
conn %default
 ike=aes256-sha1-modp1024! # the fastest, but reasonably secure cipher on modern HW
 esp=aes256-sha1!
 leftfirewall=yes # this is necessary when using Proxmox VE firewall rules

conn output
 rightsubnet=%dynamic[udp/4789]
 right=%any
 type=transport
 authby=psk
 auto=route

conn input
 leftsubnet=%dynamic[udp/4789]
 type=transport
 authby=psk
 auto=route
Generate a pre-shared key with:
openssl rand -base64 128
and add the key to /etc/ipsec.secrets, so that the file contents looks like:
: PSK <generatedbase64key>
Copy the PSK and the configuration to all nodes participating in the VXLAN network.

Chapter 13. Proxmox VE Firewall

Proxmox VE Firewall provides an easy way to protect your IT
infrastructure. You can setup firewall rules for all hosts
inside a cluster, or define rules for virtual machines and
containers. Features like firewall macros, security groups, IP sets
and aliases help to make that task easier.
While all configuration is stored on the cluster file system, the
iptables-based firewall service runs on each cluster node, and thus provides
full isolation between virtual machines. The distributed nature of
this system also provides much higher bandwidth than a central
firewall solution.
The firewall has full support for IPv4 and IPv6. IPv6 support is fully
transparent, and we filter traffic for both protocols by default. So
there is no need to maintain a different set of rules for IPv6.

13.1. Zones

The Proxmox VE firewall groups the network into the following logical zones:
	
Host

	
Traffic from/to a cluster node

	
VM

	
Traffic from/to a specific VM

For each zone, you can define firewall rules for incoming and/or
outgoing traffic.

13.2. Configuration Files

All firewall related configuration is stored on the proxmox cluster
file system. So those files are automatically distributed to all
cluster nodes, and the pve-firewall service updates the underlying
iptables rules automatically on changes.
You can configure anything using the GUI (i.e. Datacenter → Firewall,
or on a Node → Firewall), or you can edit the configuration files
directly using your preferred editor.
Firewall configuration files contain sections of key-value
pairs. Lines beginning with a # and blank lines are considered
comments. Sections start with a header line containing the section
name enclosed in [and].
13.2.1. Cluster Wide Setup

The cluster-wide firewall configuration is stored at:
/etc/pve/firewall/cluster.fw
The configuration can contain the following sections:
	
[OPTIONS]

	
This is used to set cluster-wide firewall options.

	
ebtables: <boolean> (default = 1)

	
Enable ebtables rules cluster wide.

	
enable: <integer> (0 - N)

	
Enable or disable the firewall cluster wide.

	
log_ratelimit: [enable=]<1|0> [,burst=<integer>] [,rate=<rate>]

	
Log ratelimiting settings

	
burst=<integer> (0 - N) (default = 5)

	
Initial burst of packages which will always get logged before the rate is applied

	
enable=<boolean> (default = 1)

	
Enable or disable log rate limiting

	
rate=<rate> (default = 1/second)

	
Frequency with which the burst bucket gets refilled

	
policy_in: <ACCEPT | DROP | REJECT>

	
Input policy.

	
policy_out: <ACCEPT | DROP | REJECT>

	
Output policy.

	
[RULES]

	
This sections contains cluster-wide firewall rules for all nodes.

	
[IPSET <name>]

	
Cluster wide IP set definitions.

	
[GROUP <name>]

	
Cluster wide security group definitions.

	
[ALIASES]

	
Cluster wide Alias definitions.

Enabling the Firewall

The firewall is completely disabled by default, so you need to
set the enable option here:
[OPTIONS]
enable firewall (cluster-wide setting, default is disabled)
enable: 1
Important
If you enable the firewall, traffic to all hosts is blocked by
default. Only exceptions is WebGUI(8006) and ssh(22) from your local
network.

If you want to administrate your Proxmox VE hosts from remote, you
need to create rules to allow traffic from those remote IPs to the web
GUI (port 8006). You may also want to allow ssh (port 22), and maybe
SPICE (port 3128).
Tip
Please open a SSH connection to one of your Proxmox VE hosts before
enabling the firewall. That way you still have access to the host if
something goes wrong .

To simplify that task, you can instead create an IPSet called
“management”, and add all remote IPs there. This creates all required
firewall rules to access the GUI from remote.

13.2.2. Host Specific Configuration

Host related configuration is read from:
/etc/pve/nodes/<nodename>/host.fw
This is useful if you want to overwrite rules from cluster.fw
config. You can also increase log verbosity, and set netfilter related
options. The configuration can contain the following sections:
	
[OPTIONS]

	
This is used to set host related firewall options.

	
enable: <boolean>

	
Enable host firewall rules.

	
log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for incoming traffic.

	
log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for outgoing traffic.

	
log_nf_conntrack: <boolean> (default = 0)

	
Enable logging of conntrack information.

	
ndp: <boolean> (default = 0)

	
Enable NDP (Neighbor Discovery Protocol).

	
nf_conntrack_allow_invalid: <boolean> (default = 0)

	
Allow invalid packets on connection tracking.

	
nf_conntrack_helpers: <string> (default = ``)

	
Enable conntrack helpers for specific protocols. Supported protocols: amanda, ftp, irc, netbios-ns, pptp, sane, sip, snmp, tftp

	
nf_conntrack_max: <integer> (32768 - N) (default = 262144)

	
Maximum number of tracked connections.

	
nf_conntrack_tcp_timeout_established: <integer> (7875 - N) (default = 432000)

	
Conntrack established timeout.

	
nf_conntrack_tcp_timeout_syn_recv: <integer> (30 - 60) (default = 60)

	
Conntrack syn recv timeout.

	
nosmurfs: <boolean>

	
Enable SMURFS filter.

	
protection_synflood: <boolean> (default = 0)

	
Enable synflood protection

	
protection_synflood_burst: <integer> (default = 1000)

	
Synflood protection rate burst by ip src.

	
protection_synflood_rate: <integer> (default = 200)

	
Synflood protection rate syn/sec by ip src.

	
smurf_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for SMURFS filter.

	
tcp_flags_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for illegal tcp flags filter.

	
tcpflags: <boolean> (default = 0)

	
Filter illegal combinations of TCP flags.

	
[RULES]

	
This sections contains host specific firewall rules.

13.2.3. VM/Container Configuration

VM firewall configuration is read from:
/etc/pve/firewall/<VMID>.fw
and contains the following data:
	
[OPTIONS]

	
This is used to set VM/Container related firewall options.

	
dhcp: <boolean> (default = 0)

	
Enable DHCP.

	
enable: <boolean> (default = 0)

	
Enable/disable firewall rules.

	
ipfilter: <boolean>

	
Enable default IP filters. This is equivalent to adding an empty ipfilter-net<id> ipset for every interface. Such ipsets implicitly contain sane default restrictions such as restricting IPv6 link local addresses to the one derived from the interface’s MAC address. For containers the configured IP addresses will be implicitly added.

	
log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for incoming traffic.

	
log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for outgoing traffic.

	
macfilter: <boolean> (default = 1)

	
Enable/disable MAC address filter.

	
ndp: <boolean> (default = 0)

	
Enable NDP (Neighbor Discovery Protocol).

	
policy_in: <ACCEPT | DROP | REJECT>

	
Input policy.

	
policy_out: <ACCEPT | DROP | REJECT>

	
Output policy.

	
radv: <boolean>

	
Allow sending Router Advertisement.

	
[RULES]

	
This sections contains VM/Container firewall rules.

	
[IPSET <name>]

	
IP set definitions.

	
[ALIASES]

	
IP Alias definitions.

Enabling the Firewall for VMs and Containers

Each virtual network device has its own firewall enable flag. So you
can selectively enable the firewall for each interface. This is
required in addition to the general firewall enable option.

13.3. Firewall Rules

Firewall rules consists of a direction (IN or OUT) and an
action (ACCEPT, DENY, REJECT). You can also specify a macro
name. Macros contain predefined sets of rules and options. Rules can be
disabled by prefixing them with |.
Firewall rules syntax.

[RULES]

DIRECTION ACTION [OPTIONS]
|DIRECTION ACTION [OPTIONS] # disabled rule

DIRECTION MACRO(ACTION) [OPTIONS] # use predefined macro

The following options can be used to refine rule matches.
	
--dest <string>

	
Restrict packet destination address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.

	
--dport <string>

	
Restrict TCP/UDP destination port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.

	
--icmp-type <string>

	
Specify icmp-type. Only valid if proto equals icmp or icmpv6/ipv6-icmp.

	
--iface <string>

	
Network interface name. You have to use network configuration key names for VMs and containers (net\d+). Host related rules can use arbitrary strings.

	
--log <alert | crit | debug | emerg | err | info | nolog | notice | warning>

	
Log level for firewall rule.

	
--proto <string>

	
IP protocol. You can use protocol names (tcp/udp) or simple numbers, as defined in /etc/protocols.

	
--source <string>

	
Restrict packet source address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.

	
--sport <string>

	
Restrict TCP/UDP source port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.

Here are some examples:
[RULES]
IN SSH(ACCEPT) -i net0
IN SSH(ACCEPT) -i net0 # a comment
IN SSH(ACCEPT) -i net0 -source 192.168.2.192 # only allow SSH from 192.168.2.192
IN SSH(ACCEPT) -i net0 -source 10.0.0.1-10.0.0.10 # accept SSH for IP range
IN SSH(ACCEPT) -i net0 -source 10.0.0.1,10.0.0.2,10.0.0.3 #accept ssh for IP list
IN SSH(ACCEPT) -i net0 -source +mynetgroup # accept ssh for ipset mynetgroup
IN SSH(ACCEPT) -i net0 -source myserveralias #accept ssh for alias myserveralias

|IN SSH(ACCEPT) -i net0 # disabled rule

IN DROP # drop all incoming packages
OUT ACCEPT # accept all outgoing packages

13.4. Security Groups

A security group is a collection of rules, defined at cluster level, which
can be used in all VMs' rules. For example you can define a group named
“webserver” with rules to open the http and https ports.
/etc/pve/firewall/cluster.fw

[group webserver]
IN ACCEPT -p tcp -dport 80
IN ACCEPT -p tcp -dport 443
Then, you can add this group to a VM’s firewall
/etc/pve/firewall/<VMID>.fw

[RULES]
GROUP webserver

13.5. IP Aliases

IP Aliases allow you to associate IP addresses of networks with a
name. You can then refer to those names:
	
inside IP set definitions

	
in source and dest properties of firewall rules

13.5.1. Standard IP Alias local_network

This alias is automatically defined. Please use the following command
to see assigned values:
pve-firewall localnet
local hostname: example
local IP address: 192.168.2.100
network auto detect: 192.168.0.0/20
using detected local_network: 192.168.0.0/20
The firewall automatically sets up rules to allow everything needed
for cluster communication (corosync, API, SSH) using this alias.
The user can overwrite these values in the cluster.fw alias
section. If you use a single host on a public network, it is better to
explicitly assign the local IP address
/etc/pve/firewall/cluster.fw
[ALIASES]
local_network 1.2.3.4 # use the single IP address

13.6. IP Sets

IP sets can be used to define groups of networks and hosts. You can
refer to them with ‘+name` in the firewall rules’ source and dest
properties.
The following example allows HTTP traffic from the management IP
set.
IN HTTP(ACCEPT) -source +management
13.6.1. Standard IP set management

This IP set applies only to host firewalls (not VM firewalls). Those
IPs are allowed to do normal management tasks (Proxmox VE GUI, VNC, SPICE,
SSH).
The local cluster network is automatically added to this IP set (alias
cluster_network), to enable inter-host cluster
communication. (multicast,ssh,…)
/etc/pve/firewall/cluster.fw

[IPSET management]
192.168.2.10
192.168.2.10/24

13.6.2. Standard IP set blacklist

Traffic from these IPs is dropped by every host’s and VM’s firewall.
/etc/pve/firewall/cluster.fw

[IPSET blacklist]
77.240.159.182
213.87.123.0/24

13.6.3. Standard IP set ipfilter-net*

These filters belong to a VM’s network interface and are mainly used to prevent
IP spoofing. If such a set exists for an interface then any outgoing traffic
with a source IP not matching its interface’s corresponding ipfilter set will
be dropped.
For containers with configured IP addresses these sets, if they exist (or are
activated via the general IP Filter option in the VM’s firewall’s options
tab), implicitly contain the associated IP addresses.
For both virtual machines and containers they also implicitly contain the
standard MAC-derived IPv6 link-local address in order to allow the neighbor
discovery protocol to work.
/etc/pve/firewall/<VMID>.fw

[IPSET ipfilter-net0] # only allow specified IPs on net0
192.168.2.10

13.7. Services and Commands

The firewall runs two service daemons on each node:
	
pvefw-logger: NFLOG daemon (ulogd replacement).

	
pve-firewall: updates iptables rules

There is also a CLI command named pve-firewall, which can be used to
start and stop the firewall service:
pve-firewall start
pve-firewall stop
To get the status use:
pve-firewall status
The above command reads and compiles all firewall rules, so you will
see warnings if your firewall configuration contains any errors.
If you want to see the generated iptables rules you can use:
iptables-save

13.8. Default firewall rules

The following traffic is filtered by the default firewall configuration:
13.8.1. Datacenter incoming/outgoing DROP/REJECT

If the input or output policy for the firewall is set to DROP or REJECT, the
following traffic is still allowed for all Proxmox VE hosts in the cluster:
	
traffic over the loopback interface

	
already established connections

	
traffic using the IGMP protocol

	
TCP traffic from management hosts to port 8006 in order to allow access to
 the web interface

	
TCP traffic from management hosts to the port range 5900 to 5999 allowing
 traffic for the VNC web console

	
TCP traffic from management hosts to port 3128 for connections to the SPICE
 proxy

	
TCP traffic from management hosts to port 22 to allow ssh access

	
UDP traffic in the cluster network to ports 5405-5412 for corosync

	
UDP multicast traffic in the cluster network

	
ICMP traffic type 3 (Destination Unreachable), 4 (congestion control) or 11
 (Time Exceeded)

The following traffic is dropped, but not logged even with logging enabled:
	
TCP connections with invalid connection state

	
Broadcast, multicast and anycast traffic not related to corosync, i.e., not
 coming through ports 5405-5412

	
TCP traffic to port 43

	
UDP traffic to ports 135 and 445

	
UDP traffic to the port range 137 to 139

	
UDP traffic form source port 137 to port range 1024 to 65535

	
UDP traffic to port 1900

	
TCP traffic to port 135, 139 and 445

	
UDP traffic originating from source port 53

The rest of the traffic is dropped or rejected, respectively, and also logged.
This may vary depending on the additional options enabled in
Firewall → Options, such as NDP, SMURFS and TCP flag filtering.
Please inspect the output of the
 # iptables-save
system command to see the firewall chains and rules active on your system.
This output is also included in a System Report, accessible over a node’s
subscription tab in the web GUI, or through the pvereport command-line tool.

13.8.2. VM/CT incoming/outgoing DROP/REJECT

This drops or rejects all the traffic to the VMs, with some exceptions for
DHCP, NDP, Router Advertisement, MAC and IP filtering depending on the set
configuration. The same rules for dropping/rejecting packets are inherited
from the datacenter, while the exceptions for accepted incoming/outgoing
traffic of the host do not apply.
Again, you can use iptables-save (see above)
to inspect all rules and chains applied.

13.9. Logging of firewall rules

By default, all logging of traffic filtered by the firewall rules is disabled.
To enable logging, the loglevel for incoming and/or outgoing traffic has to be
set in Firewall → Options. This can be done for the host as well as for the
VM/CT firewall individually. By this, logging of Proxmox VE’s standard firewall rules
is enabled and the output can be observed in Firewall → Log.
Further, only some dropped or rejected packets are logged for the standard rules
(see default firewall rules).
loglevel does not affect how much of the filtered traffic is logged. It
changes a LOGID appended as prefix to the log output for easier filtering and
post-processing.
loglevel is one of the following flags:
	 loglevel 	 LOGID
	nolog
	 — 

	emerg
	0

	alert
	1

	crit
	2

	err
	3

	warning
	4

	notice
	5

	info
	6

	debug
	7

A typical firewall log output looks like this:
VMID LOGID CHAIN TIMESTAMP POLICY: PACKET_DETAILS
In case of the host firewall, VMID is equal to 0.
13.9.1. Logging of user defined firewall rules

In order to log packets filtered by user-defined firewall rules, it is possible
to set a log-level parameter for each rule individually.
This allows to log in a fine grained manner and independent of the log-level
defined for the standard rules in Firewall → Options.
While the loglevel for each individual rule can be defined or changed easily
in the web UI during creation or modification of the rule, it is possible to set
this also via the corresponding pvesh API calls.
Further, the log-level can also be set via the firewall configuration file by
appending a -log <loglevel> to the selected rule (see
possible log-levels).
For example, the following two are identical:
IN REJECT -p icmp -log nolog
IN REJECT -p icmp
whereas
IN REJECT -p icmp -log debug
produces a log output flagged with the debug level.

13.10. Tips and Tricks

13.10.1. How to allow FTP

FTP is an old style protocol which uses port 21 and several other dynamic ports. So you
need a rule to accept port 21. In addition, you need to load the ip_conntrack_ftp module.
So please run:
modprobe ip_conntrack_ftp
and add ip_conntrack_ftp to /etc/modules (so that it works after a reboot).

13.10.2. Suricata IPS integration

If you want to use the Suricata IPS
(Intrusion Prevention System), it’s possible.
Packets will be forwarded to the IPS only after the firewall ACCEPTed
them.
Rejected/Dropped firewall packets don’t go to the IPS.
Install suricata on proxmox host:
apt-get install suricata
modprobe nfnetlink_queue
Don’t forget to add nfnetlink_queue to /etc/modules for next reboot.
Then, enable IPS for a specific VM with:
/etc/pve/firewall/<VMID>.fw

[OPTIONS]
ips: 1
ips_queues: 0
ips_queues will bind a specific cpu queue for this VM.
Available queues are defined in
/etc/default/suricata
NFQUEUE=0

13.11. Notes on IPv6

The firewall contains a few IPv6 specific options. One thing to note is that
IPv6 does not use the ARP protocol anymore, and instead uses NDP (Neighbor
Discovery Protocol) which works on IP level and thus needs IP addresses to
succeed. For this purpose link-local addresses derived from the interface’s MAC
address are used. By default the NDP option is enabled on both host and VM
level to allow neighbor discovery (NDP) packets to be sent and received.
Beside neighbor discovery NDP is also used for a couple of other things, like
auto-configuration and advertising routers.
By default VMs are allowed to send out router solicitation messages (to query
for a router), and to receive router advertisement packets. This allows them to
use stateless auto configuration. On the other hand VMs cannot advertise
themselves as routers unless the “Allow Router Advertisement” (radv: 1) option
is set.
As for the link local addresses required for NDP, there’s also an “IP Filter”
(ipfilter: 1) option which can be enabled which has the same effect as adding
an ipfilter-net* ipset for each of the VM’s network interfaces containing the
corresponding link local addresses. (See the
Standard IP set ipfilter-net* section for details.)

13.12. Ports used by Proxmox VE

	
Web interface: 8006 (TCP, HTTP/1.1 over TLS)

	
VNC Web console: 5900-5999 (TCP, WebSocket)

	
SPICE proxy: 3128 (TCP)

	
sshd (used for cluster actions): 22 (TCP)

	
rpcbind: 111 (UDP)

	
sendmail: 25 (TCP, outgoing)

	
corosync cluster traffic: 5405-5412 UDP

	
live migration (VM memory and local-disk data): 60000-60050 (TCP)

Chapter 14. User Management

Proxmox VE supports multiple authentication sources, for example Linux PAM,
an integrated Proxmox VE authentication server, LDAP, Microsoft Active
Directory and OpenID Connect.
By using role-based user and permission management for all objects (VMs,
Storage, nodes, etc.), granular access can be defined.

14.1. Users

Proxmox VE stores user attributes in /etc/pve/user.cfg.
Passwords are not stored here; users are instead associated with the
authentication realms described below.
Therefore, a user is often internally identified by their username and
realm in the form <userid>@<realm>.
Each user entry in this file contains the following information:
	
First name

	
Last name

	
E-mail address

	
Group memberships

	
An optional expiration date

	
A comment or note about this user

	
Whether this user is enabled or disabled

	
Optional two-factor authentication keys

Caution
When you disable or delete a user, or if the expiry date set is
in the past, this user will not be able to log in to new sessions or start new
tasks. All tasks which have already been started by this user (for example,
terminal sessions) will not be terminated automatically by any such event.

14.1.1. System administrator

The system’s root user can always log in via the Linux PAM realm and is an
unconfined administrator. This user cannot be deleted, but attributes can
still be changed. System mails will be sent to the email address
assigned to this user.

14.2. Groups

Each user can be a member of several groups. Groups are the preferred
way to organize access permissions. You should always grant permissions
to groups instead of individual users. That way you will get a
much more maintainable access control list.

14.3. API Tokens

API tokens allow stateless access to most parts of the REST API from another
system, software or API client. Tokens can be generated for individual users
and can be given separate permissions and expiration dates to limit the scope
and duration of the access. Should the API token get compromised, it can be
revoked without disabling the user itself.
API tokens come in two basic types:
	
Separated privileges: The token needs to be given explicit access with ACLs.
 Its effective permissions are calculated by intersecting user and token
 permissions.

	
Full privileges: The token’s permissions are identical to that of the
 associated user.

Caution
The token value is only displayed/returned once when the token is
generated. It cannot be retrieved again over the API at a later time!

To use an API token, set the HTTP header Authorization to the displayed value
of the form PVEAPIToken=USER@REALM!TOKENID=UUID when making API requests, or
refer to your API client’s documentation.

14.4. Resource Pools

[image: screenshot/gui-datacenter-pool-window.png]
A resource pool is a set of virtual machines, containers, and storage
devices. It is useful for permission handling in cases where certain users
should have controlled access to a specific set of resources, as it allows for a
single permission to be applied to a set of elements, rather than having to
manage this on a per-resource basis. Resource pools are often used in tandem
with groups, so that the members of a group have permissions on a set of
machines and storage.

14.5. Authentication Realms

As Proxmox VE users are just counterparts for users existing on some external
realm, the realms have to be configured in /etc/pve/domains.cfg.
The following realms (authentication methods) are available:
	
Linux PAM Standard Authentication

	
Linux PAM is a framework for system-wide user authentication. These users are
created on the host system with commands such as adduser. If PAM users exist
on the Proxmox VE host system, corresponding entries can be added to Proxmox VE, to allow
these users to log in via their system username and password.

	
Proxmox VE Authentication Server

	
This is a Unix-like password store, which stores hashed passwords in
/etc/pve/priv/shadow.cfg. Passwords are hashed using the SHA-256 hashing
algorithm. This is the most convenient realm for small-scale (or even
mid-scale) installations, where users do not need access to anything outside of
Proxmox VE. In this case, users are fully managed by Proxmox VE and are able to change
their own passwords via the GUI.

	
LDAP

	
LDAP (Lightweight Directory Access Protocol) is an open, cross-platform protocol
for authentication using directory services. OpenLDAP is a popular open-source
implementations of the LDAP protocol.

	
Microsoft Active Directory (AD)

	
Microsoft Active Directory (AD) is a directory service for Windows domain
networks and is supported as an authentication realm for Proxmox VE. It supports LDAP
as an authentication protocol.

	
OpenID Connect

	
OpenID Connect is implemented as an identity layer on top of the OATH 2.0
protocol. It allows clients to verify the identity of the user, based on
authentication performed by an external authorization server.

14.5.1. Linux PAM Standard Authentication

As Linux PAM corresponds to host system users, a system user must exist on each
node which the user is allowed to log in on. The user authenticates with their
usual system password. This realm is added by default and can’t be removed. In
terms of configurability, an administrator can choose to require two-factor
authentication with logins from the realm and to set the realm as the default
authentication realm.

14.5.2. Proxmox VE Authentication Server

The Proxmox VE authentication server realm is a simple Unix-like password store.
The realm is created by default, and as with Linux PAM, the only configuration
items available are the ability to require two-factor authentication for users
of the realm, and to set it as the default realm for login.
Unlike the other Proxmox VE realm types, users are created and authenticated entirely
through Proxmox VE, rather than authenticating against another system. Hence, you are
required to set a password for this type of user upon creation.

14.5.3. LDAP

You can also use an external LDAP server for user authentication (for examle,
OpenLDAP). In this realm type, users are searched under a Base Domain Name
(base_dn), using the username attribute specified in the User Attribute Name
(user_attr) field.
A server and optional fallback server can be configured, and the connection can
be encrypted via SSL. Furthermore, filters can be configured for directories and
groups. Filters allow you to further limit the scope of the realm.
For instance, if a user is represented via the following LDIF dataset:
user1 of People at ldap-test.com
dn: uid=user1,ou=People,dc=ldap-test,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: user1
cn: Test User 1
sn: Testers
description: This is the first test user.
The Base Domain Name would be ou=People,dc=ldap-test,dc=com and the user
attribute would be uid.
If Proxmox VE needs to authenticate (bind) to the LDAP server before being
able to query and authenticate users, a bind domain name can be
configured via the bind_dn property in /etc/pve/domains.cfg. Its
password then has to be stored in /etc/pve/priv/ldap/<realmname>.pw
(for example, /etc/pve/priv/ldap/my-ldap.pw). This file should contain a
single line with the raw password.
To verify certificates, you need to set capath. You can set it either
directly to the CA certificate of your LDAP server, or to the system path
containing all trusted CA certificates (/etc/ssl/certs).
Additionally, you need to set the verify option, which can also be done over
the web interface.
The main configuration options for an LDAP server realm are as follows:
	
Realm (realm): The realm identifier for Proxmox VE users

	
Base Domain Name (base_dn): The directory which users are searched under

	
User Attribute Name (user_attr): The LDAP attribute containing the
 username that users will log in with

	
Server (server1): The server hosting the LDAP directory

	
Fallback Server (server2): An optional fallback server address, in case
 the primary server is unreachable

	
Port (port): The port that the LDAP server listens on

Note
In order to allow a particular user to authenticate using the LDAP server,
you must also add them as a user of that realm from the Proxmox VE server. This can
be carried out automatically with syncing.

14.5.4. Microsoft Active Directory (AD)

To set up Microsoft AD as a realm, a server address and authentication domain
need to be specified. Active Directory supports most of the same properties as
LDAP, such as an optional fallback server, port, and SSL encryption.
Furthermore, users can be added to Proxmox VE automatically via
sync operations, after configuration.
As with LDAP, if Proxmox VE needs to authenticate before it binds to the AD server,
you must configure the Bind User (bind_dn) property. This property is
typically required by default for Microsoft AD.
The main configuration settings for Microsoft Active Directory are:
	
Realm (realm): The realm identifier for Proxmox VE users

	
Domain (domain): The AD domain of the server

	
Server (server1): The FQDN or IP address of the server

	
Fallback Server (server2): An optional fallback server address, in case
 the primary server is unreachable

	
Port (port): The port that the Microsoft AD server listens on

Note
Microsoft AD normally checks values like usernames without case
sensitivity. To make Proxmox VE do the same, you can disable the default
case-sensitive option by editing the realm in the web UI, or using the CLI
(change the ID with the realm ID):
pveum realm modify ID --case-sensitive 0

14.5.5. Syncing LDAP-Based Realms

[image: screenshot/gui-datacenter-realm-add-ldap.png]
It’s possible to automatically sync users and groups for LDAP-based realms (LDAP
& Microsoft Active Directory), rather than having to add them to Proxmox VE manually.
You can access the sync options from the Add/Edit window of the web interface’s
Authentication panel or via the pveum realm add/modify commands. You can
then carry out the sync operation from the Authentication panel of the GUI or
using the following command:
pveum realm sync <realm>
Users and groups are synced to the cluster-wide configuration file,
/etc/pve/user.cfg.
Attributes to Properties

If the sync response includes user attributes, they will be synced into the
matching user property in the user.cfg. For example: firstname or
lastname.
If the names of the attributes are not matching the Proxmox VE properties, you can
set a custom field-to-field map in the config by using the sync_attributes
option.
How such properties are handled if anything vanishes can be controlled via the
sync options, see below.

Sync Configuration

The configuration options for syncing LDAP-based realms can be found in the
Sync Options tab of the Add/Edit window.
The configuration options are as follows:
	
Bind User (bind_dn): Refers to the LDAP account used to query users
 and groups. This account needs access to all desired entries. If it’s set, the
 search will be carried out via binding; otherwise, the search will be carried
 out anonymously. The user must be a complete LDAP formatted distinguished name
 (DN), for example, cn=admin,dc=example,dc=com.

	
Groupname attr. (group_name_attr): Represents the
 users' groups. Only entries which adhere to the usual character limitations of
 the user.cfg are synced. Groups are synced with -$realm attached to the
 name, in order to avoid naming conflicts. Please ensure that a sync does not
 overwrite manually created groups.

	
User classes (user_classes): Objects classes associated with users.

	
Group classes (group_classes): Objects classes associated with groups.

	
E-Mail attribute: If the LDAP-based server specifies user email addresses,
 these can also be included in the sync by setting the associated attribute
 here. From the command line, this is achievable through the
 --sync_attributes parameter.

	
User Filter (filter): For further filter options to target specific users.

	
Group Filter (group_filter): For further filter options to target specific
 groups.

Note
Filters allow you to create a set of additional match criteria, to narrow
down the scope of a sync. Information on available LDAP filter types and their
usage can be found at ldap.com.

Sync Options

[image: screenshot/gui-datacenter-realm-add-ldap-sync-options.png]
In addition to the options specified in the previous section, you can also
configure further options that describe the behavior of the sync operation.
These options are either set as parameters before the sync, or as defaults via
the realm option sync-defaults-options.
The main options for syncing are:
	
Scope (scope): The scope of what to sync. It can be either users,
 groups or both.

	
Enable new (enable-new): If set, the newly synced users are enabled and
 can log in. The default is true.

	
Remove Vanished (remove-vanished): This is a list of options which, when
 activated, determine if they are removed when they are not returned from
 the sync response. The options are:

	
ACL (acl): Remove ACLs of users and groups which were not returned
 returned in the sync response. This most often makes sense together with
 Entry.

	
Entry (entry): Removes entries (i.e. users and groups) when they are
 not returned in the sync response.

	
Properties (properties): Removes properties of entries where the user
 in the sync response did not contain those attributes. This includes
 all properties, even those never set by a sync. Exceptions are tokens
 and the enable flag, these will be retained even with this option enabled.

	
Preview (dry-run): No data is written to the config. This is useful if you
 want to see which users and groups would get synced to the user.cfg.

Reserved characters

Certain characters are reserved (see RFC2253) and cannot be
easily used in attribute values in DNs without being escaped properly.
Following characters need escaping:
	
Space () at the beginning or end

	
Number sign (#) at the beginning

	
Comma (,)

	
Plus sign (+)

	
Double quote (")

	
Forward slashes (/)

	
Angle brackets (<>)

	
Semicolon (;)

	
Equals sign (=)

To use such characters in DNs, surround the attribute value in double quotes.
For example, to bind with a user with the CN (Common Name) Example, User, use
CN="Example, User",OU=people,DC=example,DC=com as value for bind_dn.
This applies to the base_dn, bind_dn, and group_dn attributes.
Note
Users with colons and forward slashes cannot be synced since these are
reserved characters in usernames.

14.5.6. OpenID Connect

The main OpenID Connect configuration options are:
	
Issuer URL (issuer-url): This is the URL of the authorization server.
Proxmox uses the OpenID Connect Discovery protocol to automatically configure
further details.

While it is possible to use unencrypted http:// URLs, we strongly recommend to
use encrypted https:// connections.

	
Realm (realm): The realm identifier for Proxmox VE users

	
Client ID (client-id): OpenID Client ID.

	
Client Key (client-key): Optional OpenID Client Key.

	
Autocreate Users (autocreate): Automatically create users if they do not
exist. While authentication is done at the OpenID server, all users still need
an entry in the Proxmox VE user configuration. You can either add them manually, or
use the autocreate option to automatically add new users.

	
Username Claim (username-claim): OpenID claim used to generate the unique
username (subject, username or email).

Username mapping

The OpenID Connect specification defines a single unique attribute
(claim in OpenID terms) named subject. By default, we use the
value of this attribute to generate Proxmox VE usernames, by simple adding
@ and the realm name: ${subject}@${realm}.
Unfortunately, most OpenID servers use random strings for subject, like
DGH76OKH34BNG3245SB, so a typical username would look like
DGH76OKH34BNG3245SB@yourrealm. While unique, it is difficult for
humans to remember such random strings, making it quite impossible to
associate real users with this.
The username-claim setting allows you to use other attributes for
the username mapping. Setting it to username is preferred if the
OpenID Connect server provides that attribute and guarantees its
uniqueness.
Another option is to use email, which also yields human readable
usernames. Again, only use this setting if the server guarantees the
uniqueness of this attribute.

Examples

Here is an example of creating an OpenID realm using Google. You need to
replace --client-id and --client-key with the values
from your Google OpenID settings.
pveum realm add myrealm1 --type openid --issuer-url https://accounts.google.com --client-id XXXX --client-key YYYY --username-claim email
The above command uses --username-claim email, so that the usernames on the
Proxmox VE side look like example.user@google.com@myrealm1.
Keycloak (https://www.keycloak.org/) is a popular open source Identity
and Access Management tool, which supports OpenID Connect. In the following
example, you need to replace the --issuer-url and --client-id with
your information:
pveum realm add myrealm2 --type openid --issuer-url https://your.server:8080/realms/your-realm --client-id XXX --username-claim username
Using --username-claim username enables simple usernames on the
Proxmox VE side, like example.user@myrealm2.
Warning
You need to ensure that the user is not allowed to edit
the username setting themselves (on the Keycloak server).

14.6. Two-Factor Authentication

There are two ways to use two-factor authentication:
It can be required by the authentication realm, either via TOTP
(Time-based One-Time Password) or YubiKey OTP. In this case, a newly
created user needs to have their keys added immediately, as there is no way to
log in without the second factor. In the case of TOTP, users can
also change the TOTP later on, provided they can log in first.
Alternatively, users can choose to opt-in to two-factor authentication
later on, even if the realm does not enforce it.
14.6.1. Available Second Factors

You can set up multiple second factors, in order to avoid a situation in
which losing your smartphone or security key locks you out of your
account permanently.
The following two-factor authentication methods are available in
addition to realm-enforced TOTP and YubiKey OTP:
	
User configured TOTP
 (Time-based One-Time Password).
 A short code derived from a shared secret and the current time, it changes
 every 30 seconds.

	
WebAuthn (Web Authentication).
 A general standard for authentication. It is implemented by various
 security devices, like hardware keys or trusted platform modules (TPM)
 from a computer or smart phone.

	
Single use Recovery Keys. A list of keys which should either be
 printed out and locked in a secure place or saved digitally in an
 electronic vault. Each key can be used only once. These are perfect for
 ensuring that you are not locked out, even if all of your other second
 factors are lost or corrupt.

Before WebAuthn was supported, U2F could be setup by the user. Existing
U2F factors can still be used, but it is recommended to switch to
WebAuthn, once it is configured on the server.

14.6.2. Realm Enforced Two-Factor Authentication

This can be done by selecting one of the available methods via the
TFA dropdown box when adding or editing an Authentication Realm.
When a realm has TFA enabled, it becomes a requirement, and only users
with configured TFA will be able to log in.
Currently there are two methods available:
	
Time-based OATH (TOTP)

	
This uses the standard HMAC-SHA1 algorithm,
where the current time is hashed with the user’s configured key. The
time step and password length parameters are configurable.

A user can have multiple keys configured (separated by spaces), and the keys
can be specified in Base32 (RFC3548) or hexadecimal notation.
Proxmox VE provides a key generation tool (oathkeygen) which prints out a random
key in Base32 notation, that can be used directly with various OTP tools, such
as the oathtool command-line tool, or on Android Google Authenticator,
FreeOTP, andOTP or similar applications.

	
YubiKey OTP

	
For authenticating via a YubiKey a Yubico API ID, API KEY and validation
server URL must be configured, and users must have a YubiKey available. In
order to get the key ID from a YubiKey, you can trigger the YubiKey once
after connecting it via USB, and copy the first 12 characters of the typed
password into the user’s Key IDs field.

Please refer to the YubiKey OTP
documentation for how to use the
YubiCloud or
host your own verification server.

14.6.3. Limits and Lockout of Two-Factor Authentication

A second factor is meant to protect users if their password is somehow leaked
or guessed. However, some factors could still be broken by brute force. For
this reason, users will be locked out after too many failed 2nd factor login
attempts.
For TOTP, 8 failed attempts will disable the user’s TOTP factors. They are
unlocked when logging in with a recovery key. If TOTP was the only available
factor, admin intervention is required, and it is highly recommended to require
the user to change their password immediately.
Since FIDO2/Webauthn and recovery keys are less susceptible to brute force
attacks, the limit there is higher (100 tries), but all second factors are
blocked for an hour when exceeded.
An admin can unlock a user’s Two-Factor Authentication at any time via the user
list in the UI or the command line:
 pveum user tfa unlock joe@pve

14.6.4. User Configured TOTP Authentication

Users can choose to enable TOTP or WebAuthn as a second factor on login, via
the TFA button in the user list (unless the realm enforces YubiKey OTP).
Users can always add and use one time Recovery Keys.
[image: screenshot/gui-datacenter-two-factor.png]
After opening the TFA window, the user is presented with a dialog to set up
TOTP authentication. The Secret field contains the key, which can be
randomly generated via the Randomize button. An optional Issuer Name can be
added to provide information to the TOTP app about what the key belongs to.
Most TOTP apps will show the issuer name together with the corresponding
OTP values. The username is also included in the QR code for the TOTP app.
After generating a key, a QR code will be displayed, which can be used with most
OTP apps such as FreeOTP. The user then needs to verify the current user
password (unless logged in as root), as well as the ability to correctly use
the TOTP key, by typing the current OTP value into the Verification Code
field and pressing the Apply button.

14.6.5. TOTP

[image: screenshot/pve-gui-tfa-add-totp.png]
There is no server setup required. Simply install a TOTP app on your
smartphone (for example, FreeOTP) and use
the Proxmox Backup Server web interface to add a TOTP factor.

14.6.6. WebAuthn

For WebAuthn to work, you need to have two things:
	
A trusted HTTPS certificate (for example, by using
 Let’s Encrypt).
 While it probably works with an untrusted certificate, some browsers may
 warn or refuse WebAuthn operations if it is not trusted.

	
Setup the WebAuthn configuration (see Datacenter → Options →
 WebAuthn Settings in the Proxmox VE web interface). This can be
 auto-filled in most setups.

Once you have fulfilled both of these requirements, you can add a WebAuthn
configuration in the Two Factor panel under Datacenter → Permissions → Two
Factor.

14.6.7. Recovery Keys

[image: screenshot/pve-gui-tfa-add-recovery-keys.png]
Recovery key codes do not need any preparation; you can simply create a
set of recovery keys in the Two Factor panel under Datacenter → Permissions
→ Two Factor.
Note
There can only be one set of single-use recovery keys per user at any
time.

14.6.8. Server Side Webauthn Configuration

[image: screenshot/gui-datacenter-webauthn-edit.png]
To allow users to use WebAuthn authentication, it is necessaary to use a valid
domain with a valid SSL certificate, otherwise some browsers may warn or refuse
to authenticate altogether.
Note
Changing the WebAuthn configuration may render all existing WebAuthn
registrations unusable!

This is done via /etc/pve/datacenter.cfg. For instance:
webauthn: rp=mypve.example.com,origin=https://mypve.example.com:8006,id=mypve.example.com

14.6.9. Server Side U2F Configuration

Note
It is recommended to use WebAuthn instead.

To allow users to use U2F authentication, it may be necessary to use a valid
domain with a valid SSL certificate, otherwise, some browsers may print
a warning or reject U2F usage altogether. Initially, an AppId
[52]
needs to be configured.
Note
Changing the AppId will render all existing U2F registrations
unusable!

This is done via /etc/pve/datacenter.cfg. For instance:
u2f: appid=https://mypve.example.com:8006
For a single node, the AppId can simply be the address of the web interface,
exactly as it is used in the browser, including the https:// and the port, as
shown above. Please note that some browsers may be more strict than others when
matching AppIds.
When using multiple nodes, it is best to have a separate https server
providing an appid.json
[53]
file, as it seems to be compatible with most
browsers. If all nodes use subdomains of the same top level domain, it may be
enough to use the TLD as AppId. It should however be noted that some browsers
may not accept this.
Note
A bad AppId will usually produce an error, but we have encountered
situations when this does not happen, particularly when using a top level domain
AppId for a node that is accessed via a subdomain in Chromium. For this reason
it is recommended to test the configuration with multiple browsers, as changing
the AppId later will render existing U2F registrations unusable.

14.6.10. Activating U2F as a User

To enable U2F authentication, open the TFA window’s U2F tab, type in the
current password (unless logged in as root), and press the Register button.
If the server is set up correctly and the browser accepts the server’s provided
AppId, a message will appear prompting the user to press the button on the
U2F device (if it is a YubiKey, the button light should be toggling on and
off steadily, roughly twice per second).
Firefox users may need to enable security.webauth.u2f via about:config
before they can use a U2F token.

[52] AppId https://developers.yubico.com/U2F/App_ID.html

[53] Multi-facet apps: https://developers.yubico.com/U2F/App_ID.html

14.7. Permission Management

In order for a user to perform an action (such as listing, modifying or
deleting parts of a VM’s configuration), the user needs to have the
appropriate permissions.
Proxmox VE uses a role and path based permission management system. An entry in
the permissions table allows a user, group or token to take on a specific role
when accessing an object or path. This means that such an access rule can
be represented as a triple of (path, user, role), (path, group,
role) or (path, token, role), with the role containing a set of allowed
actions, and the path representing the target of these actions.
14.7.1. Roles

A role is simply a list of privileges. Proxmox VE comes with a number
of predefined roles, which satisfy most requirements.
	
Administrator: has full privileges

	
NoAccess: has no privileges (used to forbid access)

	
PVEAdmin: can do most tasks, but has no rights to modify system settings
 (Sys.PowerMgmt, Sys.Modify, Realm.Allocate) or permissions
 (Permissions.Modify)

	
PVEAuditor: has read only access

	
PVEDatastoreAdmin: create and allocate backup space and templates

	
PVEDatastoreUser: allocate backup space and view storage

	
PVEMappingAdmin: manage resource mappings

	
PVEMappingUser: view and use resource mappings

	
PVEPoolAdmin: allocate pools

	
PVEPoolUser: view pools

	
PVESDNAdmin: manage SDN configuration

	
PVESDNUser: access to bridges/vnets

	
PVESysAdmin: audit, system console and system logs

	
PVETemplateUser: view and clone templates

	
PVEUserAdmin: manage users

	
PVEVMAdmin: fully administer VMs

	
PVEVMUser: view, backup, configure CD-ROM, VM console, VM power management

You can see the whole set of predefined roles in the GUI.
You can add new roles via the GUI or the command line.
[image: screenshot/gui-datacenter-role-add.png]
From the GUI, navigate to the Permissions → Roles tab from Datacenter and
click on the Create button. There you can set a role name and select any
desired privileges from the Privileges drop-down menu.
To add a role through the command line, you can use the pveum CLI tool, for
example:
pveum role add VM_Power-only --privs "VM.PowerMgmt VM.Console"
pveum role add Sys_Power-only --privs "Sys.PowerMgmt Sys.Console"
Note
Roles starting with PVE are always builtin, custom roles are not
allowed use this reserved prefix.

14.7.2. Privileges

A privilege is the right to perform a specific action. To simplify
management, lists of privileges are grouped into roles, which can then
be used in the permission table. Note that privileges cannot be directly
assigned to users and paths without being part of a role.
We currently support the following privileges:
	
Node / System related privileges

		
Group.Allocate: create/modify/remove groups

	
Mapping.Audit: view resource mappings

	
Mapping.Modify: manage resource mappings

	
Mapping.Use: use resource mappings

	
Permissions.Modify: modify access permissions

	
Pool.Allocate: create/modify/remove a pool

	
Pool.Audit: view a pool

	
Realm.AllocateUser: assign user to a realm

	
Realm.Allocate: create/modify/remove authentication realms

	
SDN.Allocate: manage SDN configuration

	
SDN.Audit: view SDN configuration

	
Sys.Audit: view node status/config, Corosync cluster config, and HA config

	
Sys.Console: console access to node

	
Sys.Incoming: allow incoming data streams from other clusters (experimental)

	
Sys.Modify: create/modify/remove node network parameters

	
Sys.PowerMgmt: node power management (start, stop, reset, shutdown, …)

	
Sys.Syslog: view syslog

	
User.Modify: create/modify/remove user access and details.

	
Virtual machine related privileges

		
SDN.Use: access SDN vnets and local network bridges

	
VM.Allocate: create/remove VM on a server

	
VM.Audit: view VM config

	
VM.Backup: backup/restore VMs

	
VM.Clone: clone/copy a VM

	
VM.Config.CDROM: eject/change CD-ROM

	
VM.Config.CPU: modify CPU settings

	
VM.Config.Cloudinit: modify Cloud-init parameters

	
VM.Config.Disk: add/modify/remove disks

	
VM.Config.HWType: modify emulated hardware types

	
VM.Config.Memory: modify memory settings

	
VM.Config.Network: add/modify/remove network devices

	
VM.Config.Options: modify any other VM configuration

	
VM.Console: console access to VM

	
VM.Migrate: migrate VM to alternate server on cluster

	
VM.Monitor: access to VM monitor (kvm)

	
VM.PowerMgmt: power management (start, stop, reset, shutdown, …)

	
VM.Snapshot.Rollback: rollback VM to one of its snapshots

	
VM.Snapshot: create/delete VM snapshots

	
Storage related privileges

		
Datastore.Allocate: create/modify/remove a datastore and delete volumes

	
Datastore.AllocateSpace: allocate space on a datastore

	
Datastore.AllocateTemplate: allocate/upload templates and ISO images

	
Datastore.Audit: view/browse a datastore

Warning
Both Permissions.Modify and Sys.Modify should be handled with
care, as they allow modifying aspects of the system and its configuration that
are dangerous or sensitive.

Warning
Carefully read the section about inheritance below to understand how
assigned roles (and their privileges) are propagated along the ACL tree.

14.7.3. Objects and Paths

Access permissions are assigned to objects, such as virtual machines,
storages or resource pools.
We use file system like paths to address these objects. These paths form a
natural tree, and permissions of higher levels (shorter paths) can
optionally be propagated down within this hierarchy.
Paths can be templated. When an API call requires permissions on a
templated path, the path may contain references to parameters of the API
call. These references are specified in curly braces. Some parameters are
implicitly taken from the API call’s URI. For instance, the permission path
/nodes/{node} when calling /nodes/mynode/status requires permissions on
/nodes/mynode, while the path {path} in a PUT request to /access/acl
refers to the method’s path parameter.
Some examples are:
	
/nodes/{node}: Access to Proxmox VE server machines

	
/vms: Covers all VMs

	
/vms/{vmid}: Access to specific VMs

	
/storage/{storeid}: Access to a specific storage

	
/pool/{poolname}: Access to resources contained in a specific pool

	
/access/groups: Group administration

	
/access/realms/{realmid}: Administrative access to realms

Inheritance

As mentioned earlier, object paths form a file system like tree, and
permissions can be inherited by objects down that tree (the propagate flag is
set by default). We use the following inheritance rules:
	
Permissions for individual users always replace group permissions.

	
Permissions for groups apply when the user is member of that group.

	
Permissions on deeper levels replace those inherited from an upper level.

	
NoAccess cancels all other roles on a given path.

Additionally, privilege separated tokens can never have permissions on any
given path that their associated user does not have.

14.7.4. Pools

Pools can be used to group a set of virtual machines and datastores. You can
then simply set permissions on pools (/pool/{poolid}), which are inherited by
all pool members. This is a great way to simplify access control.

14.7.5. Which Permissions Do I Need?

The required API permissions are documented for each individual
method, and can be found at https://pve.proxmox.com/pve-docs/api-viewer/.
The permissions are specified as a list, which can be interpreted as a
tree of logic and access-check functions:
	
["and", <subtests>...] and ["or", <subtests>...]

	
Each(and) or any(or) further element in the current list has to be true.

	
["perm", <path>, [<privileges>...], <options>...]

	
The path is a templated parameter (see
Objects and Paths). All (or, if the any
option is used, any) of the listed
privileges must be allowed on the specified path. If a require-param
option is specified, then its specified parameter is required even if the
API call’s schema otherwise lists it as being optional.

	
["userid-group", [<privileges>...], <options>...]

	
The caller must have any of the listed privileges on /access/groups. In
addition, there are two possible checks, depending on whether the
groups_param option is set:

	
groups_param is set: The API call has a non-optional groups parameter
and the caller must have any of the listed privileges on all of the listed
groups.

	
groups_param is not set: The user passed via the userid parameter
must exist and be part of a group on which the caller has any of the listed
privileges (via the /access/groups/<group> path).

	
["userid-param", "self"]

	
The value provided for the API call’s userid parameter must refer to the
user performing the action (usually in conjunction with or, to allow
users to perform an action on themselves, even if they don’t have elevated
privileges).

	
["userid-param", "Realm.AllocateUser"]

	
The user needs Realm.AllocateUser access to /access/realm/<realm>, with
<realm> referring to the realm of the user passed via the userid
parameter. Note that the user does not need to exist in order to be
associated with a realm, since user IDs are passed in the form of
<username>@<realm>.

	
["perm-modify", <path>]

	
The path is a templated parameter (see
Objects and Paths). The user needs either the
Permissions.Modify privilege or,
depending on the path, the following privileges as a possible substitute:

	
/storage/...: requires 'Datastore.Allocate`

	
/vms/...: requires 'VM.Allocate`

	
/pool/...: requires 'Pool.Allocate`

If the path is empty, Permissions.Modify on /access is required.
If the user does not have the Permissions.Modify privilege, they can only
delegate subsets of their own privileges on the given path (e.g., a user with
PVEVMAdmin could assign PVEVMUser, but not PVEAdmin).

14.8. Command-line Tool

Most users will simply use the GUI to manage users. But there is also
a fully featured command-line tool called pveum (short for “Proxmox
VE User Manager”). Please note that all Proxmox VE command-line
tools are wrappers around the API, so you can also access those
functions through the REST API.
Here are some simple usage examples. To show help, type:
 pveum
or (to show detailed help about a specific command)
 pveum help user add
Create a new user:
 pveum user add testuser@pve -comment "Just a test"
Set or change the password (not all realms support this):
 pveum passwd testuser@pve
Disable a user:
 pveum user modify testuser@pve -enable 0
Create a new group:
 pveum group add testgroup
Create a new role:
 pveum role add PVE_Power-only -privs "VM.PowerMgmt VM.Console"

14.9. Real World Examples

14.9.1. Administrator Group

It is possible that an administrator would want to create a group of users with
full administrator rights (without using the root account).
To do this, first define the group:
 pveum group add admin -comment "System Administrators"
Then assign the role:
 pveum acl modify / -group admin -role Administrator
Finally, you can add users to the new admin group:
 pveum user modify testuser@pve -group admin

14.9.2. Auditors

You can give read only access to users by assigning the PVEAuditor
role to users or groups.
Example 1: Allow user joe@pve to see everything
 pveum acl modify / -user joe@pve -role PVEAuditor
Example 2: Allow user joe@pve to see all virtual machines
 pveum acl modify /vms -user joe@pve -role PVEAuditor

14.9.3. Delegate User Management

If you want to delegate user management to user joe@pve, you can do
that with:
 pveum acl modify /access -user joe@pve -role PVEUserAdmin
User joe@pve can now add and remove users, and change other user attributes,
such as passwords. This is a very powerful role, and you most
likely want to limit it to selected realms and groups. The following
example allows joe@pve to modify users within the realm pve, if they
are members of group customers:
 pveum acl modify /access/realm/pve -user joe@pve -role PVEUserAdmin
 pveum acl modify /access/groups/customers -user joe@pve -role PVEUserAdmin
Note
The user is able to add other users, but only if they are
members of the group customers and within the realm pve.

14.9.4. Limited API Token for Monitoring

Permissions on API tokens are always a subset of those of their corresponding
user, meaning that an API token can’t be used to carry out a task that the
backing user has no permission to do. This section will demonstrate how you can
use an API token with separate privileges, to limit the token owner’s
permissions further.
Give the user joe@pve the role PVEVMAdmin on all VMs:
 pveum acl modify /vms -user joe@pve -role PVEVMAdmin
Add a new API token with separate privileges, which is only allowed to view VM
information (for example, for monitoring purposes):
 pveum user token add joe@pve monitoring -privsep 1
 pveum acl modify /vms -token 'joe@pve!monitoring' -role PVEAuditor
Verify the permissions of the user and token:
 pveum user permissions joe@pve
 pveum user token permissions joe@pve monitoring

14.9.5. Resource Pools

An enterprise is usually structured into several smaller departments, and it is
common that you want to assign resources and delegate management tasks to each
of these. Let’s assume that you want to set up a pool for a software development
department. First, create a group:
 pveum group add developers -comment "Our software developers"
Now we create a new user which is a member of that group:
 pveum user add developer1@pve -group developers -password
Note
The "-password" parameter will prompt you for a password

Then we create a resource pool for our development department to use:
 pveum pool add dev-pool --comment "IT development pool"
Finally, we can assign permissions to that pool:
 pveum acl modify /pool/dev-pool/ -group developers -role PVEAdmin
Our software developers can now administer the resources assigned to
that pool.

Chapter 15. High Availability

Our modern society depends heavily on information provided by
computers over the network. Mobile devices amplified that dependency,
because people can access the network any time from anywhere. If you
provide such services, it is very important that they are available
most of the time.
We can mathematically define the availability as the ratio of (A), the
total time a service is capable of being used during a given interval
to (B), the length of the interval. It is normally expressed as a
percentage of uptime in a given year.
Table 15.1. Availability - Downtime per Year
	Availability % 	Downtime per year
	99
	3.65 days

	99.9
	8.76 hours

	99.99
	52.56 minutes

	99.999
	5.26 minutes

	99.9999
	31.5 seconds

	99.99999
	3.15 seconds

There are several ways to increase availability. The most elegant
solution is to rewrite your software, so that you can run it on
several hosts at the same time. The software itself needs to have a way
to detect errors and do failover. If you only want to serve read-only
web pages, then this is relatively simple. However, this is generally complex
and sometimes impossible, because you cannot modify the software yourself. The
following solutions works without modifying the software:
	
Use reliable “server” components

Note
Computer components with the same functionality can have varying
reliability numbers, depending on the component quality. Most vendors
sell components with higher reliability as “server” components -
usually at higher price.

	
Eliminate single point of failure (redundant components)

	
use an uninterruptible power supply (UPS)

	
use redundant power supplies in your servers

	
use ECC-RAM

	
use redundant network hardware

	
use RAID for local storage

	
use distributed, redundant storage for VM data

	
Reduce downtime

	
rapidly accessible administrators (24/7)

	
availability of spare parts (other nodes in a Proxmox VE cluster)

	
automatic error detection (provided by ha-manager)

	
automatic failover (provided by ha-manager)

Virtualization environments like Proxmox VE make it much easier to reach
high availability because they remove the “hardware” dependency. They
also support the setup and use of redundant storage and network
devices, so if one host fails, you can simply start those services on
another host within your cluster.
Better still, Proxmox VE provides a software stack called ha-manager,
which can do that automatically for you. It is able to automatically
detect errors and do automatic failover.
Proxmox VE ha-manager works like an “automated” administrator. First, you
configure what resources (VMs, containers, …) it should
manage. Then, ha-manager observes the correct functionality, and handles
service failover to another node in case of errors. ha-manager can
also handle normal user requests which may start, stop, relocate and
migrate a service.
But high availability comes at a price. High quality components are
more expensive, and making them redundant doubles the costs at
least. Additional spare parts increase costs further. So you should
carefully calculate the benefits, and compare with those additional
costs.
Tip
Increasing availability from 99% to 99.9% is relatively
simple. But increasing availability from 99.9999% to 99.99999% is very
hard and costly. ha-manager has typical error detection and failover
times of about 2 minutes, so you can get no more than 99.999%
availability.

15.1. Requirements

You must meet the following requirements before you start with HA:
	
at least three cluster nodes (to get reliable quorum)

	
shared storage for VMs and containers

	
hardware redundancy (everywhere)

	
use reliable “server” components

	
hardware watchdog - if not available we fall back to the
 linux kernel software watchdog (softdog)

	
optional hardware fencing devices

15.2. Resources

We call the primary management unit handled by ha-manager a
resource. A resource (also called “service”) is uniquely
identified by a service ID (SID), which consists of the resource type
and a type specific ID, for example vm:100. That example would be a
resource of type vm (virtual machine) with the ID 100.
For now we have two important resources types - virtual machines and
containers. One basic idea here is that we can bundle related software
into such a VM or container, so there is no need to compose one big
service from other services, as was done with rgmanager. In
general, a HA managed resource should not depend on other resources.

15.3. Management Tasks

This section provides a short overview of common management tasks. The
first step is to enable HA for a resource. This is done by adding the
resource to the HA resource configuration. You can do this using the
GUI, or simply use the command-line tool, for example:
ha-manager add vm:100
The HA stack now tries to start the resources and keep them
running. Please note that you can configure the “requested”
resources state. For example you may want the HA stack to stop the
resource:
ha-manager set vm:100 --state stopped
and start it again later:
ha-manager set vm:100 --state started
You can also use the normal VM and container management commands. They
automatically forward the commands to the HA stack, so
qm start 100
simply sets the requested state to started. The same applies to qm
stop, which sets the requested state to stopped.
Note
The HA stack works fully asynchronous and needs to communicate
with other cluster members. Therefore, it takes some seconds until you see
the result of such actions.

To view the current HA resource configuration use:
ha-manager config
vm:100
 state stopped
And you can view the actual HA manager and resource state with:
ha-manager status
quorum OK
master node1 (active, Wed Nov 23 11:07:23 2016)
lrm elsa (active, Wed Nov 23 11:07:19 2016)
service vm:100 (node1, started)
You can also initiate resource migration to other nodes:
ha-manager migrate vm:100 node2
This uses online migration and tries to keep the VM running. Online
migration needs to transfer all used memory over the network, so it is
sometimes faster to stop the VM, then restart it on the new node. This can be
done using the relocate command:
ha-manager relocate vm:100 node2
Finally, you can remove the resource from the HA configuration using
the following command:
ha-manager remove vm:100
Note
This does not start or stop the resource.

But all HA related tasks can be done in the GUI, so there is no need to
use the command line at all.

15.4. How It Works

This section provides a detailed description of the Proxmox VE HA manager
internals. It describes all involved daemons and how they work
together. To provide HA, two daemons run on each node:
	
pve-ha-lrm

	
The local resource manager (LRM), which controls the services running on
the local node. It reads the requested states for its services from
the current manager status file and executes the respective commands.

	
pve-ha-crm

	
The cluster resource manager (CRM), which makes the cluster-wide
decisions. It sends commands to the LRM, processes the results,
and moves resources to other nodes if something fails. The CRM also
handles node fencing.

Note
Locks are provided by our distributed configuration file system (pmxcfs).
They are used to guarantee that each LRM is active once and working. As an
LRM only executes actions when it holds its lock, we can mark a failed node
as fenced if we can acquire its lock. This then lets us recover any failed
HA services securely without any interference from the now unknown failed node.
This all gets supervised by the CRM which currently holds the manager master
lock.

15.4.1. Service States

The CRM uses a service state enumeration to record the current service
state. This state is displayed on the GUI and can be queried using
the ha-manager command-line tool:
ha-manager status
quorum OK
master elsa (active, Mon Nov 21 07:23:29 2016)
lrm elsa (active, Mon Nov 21 07:23:22 2016)
service ct:100 (elsa, stopped)
service ct:102 (elsa, started)
service vm:501 (elsa, started)
Here is the list of possible states:
	
stopped

	
Service is stopped (confirmed by LRM). If the LRM detects a stopped
service is still running, it will stop it again.

	
request_stop

	
Service should be stopped. The CRM waits for confirmation from the
LRM.

	
stopping

	
Pending stop request. But the CRM did not get the request so far.

	
started

	
Service is active an LRM should start it ASAP if not already running.
If the Service fails and is detected to be not running the LRM
restarts it
(see Start Failure Policy).

	
starting

	
Pending start request. But the CRM has not got any confirmation from the
LRM that the service is running.

	
fence

	
Wait for node fencing as the service node is not inside the quorate cluster
partition (see Fencing).
As soon as node gets fenced successfully the service will be placed into the
recovery state.

	
recovery

	
Wait for recovery of the service. The HA manager tries to find a new node where
the service can run on. This search depends not only on the list of online and
quorate nodes, but also if the service is a group member and how such a group
is limited.
As soon as a new available node is found, the service will be moved there and
initially placed into stopped state. If it’s configured to run the new node
will do so.

	
freeze

	
Do not touch the service state. We use this state while we reboot a
node, or when we restart the LRM daemon
(see Package Updates).

	
ignored

	
Act as if the service were not managed by HA at all.
Useful, when full control over the service is desired temporarily, without
removing it from the HA configuration.

	
migrate

	
Migrate service (live) to other node.

	
error

	
Service is disabled because of LRM errors. Needs manual intervention
(see Error Recovery).

	
queued

	
Service is newly added, and the CRM has not seen it so far.

	
disabled

	
Service is stopped and marked as disabled

15.4.2. Local Resource Manager

The local resource manager (pve-ha-lrm) is started as a daemon on
boot and waits until the HA cluster is quorate and thus cluster-wide
locks are working.
It can be in three states:
	
wait for agent lock

	
The LRM waits for our exclusive lock. This is also used as idle state if no
service is configured.

	
active

	
The LRM holds its exclusive lock and has services configured.

	
lost agent lock

	
The LRM lost its lock, this means a failure happened and quorum was lost.

After the LRM gets in the active state it reads the manager status
file in /etc/pve/ha/manager_status and determines the commands it
has to execute for the services it owns.
For each command a worker gets started, these workers are running in
parallel and are limited to at most 4 by default. This default setting
may be changed through the datacenter configuration key max_worker.
When finished the worker process gets collected and its result saved for
the CRM.
Note
The default value of at most 4 concurrent workers may be unsuited for
a specific setup. For example, 4 live migrations may occur at the same
time, which can lead to network congestions with slower networks and/or
big (memory wise) services. Also, ensure that in the worst case, congestion is
at a minimum, even if this means lowering the max_worker value. On the
contrary, if you have a particularly powerful, high-end setup you may also want
to increase it.

Each command requested by the CRM is uniquely identifiable by a UID. When
the worker finishes, its result will be processed and written in the LRM
status file /etc/pve/nodes/<nodename>/lrm_status. There the CRM may collect
it and let its state machine - respective to the commands output - act on it.
The actions on each service between CRM and LRM are normally always synced.
This means that the CRM requests a state uniquely marked by a UID, the LRM
then executes this action one time and writes back the result, which is also
identifiable by the same UID. This is needed so that the LRM does not
execute an outdated command.
The only exceptions to this behaviour are the stop and error commands;
these two do not depend on the result produced and are executed
always in the case of the stopped state and once in the case of
the error state.
Note
The HA Stack logs every action it makes. This helps to understand what
and also why something happens in the cluster. Here its important to see
what both daemons, the LRM and the CRM, did. You may use
journalctl -u pve-ha-lrm on the node(s) where the service is and
the same command for the pve-ha-crm on the node which is the current master.

15.4.3. Cluster Resource Manager

The cluster resource manager (pve-ha-crm) starts on each node and
waits there for the manager lock, which can only be held by one node
at a time. The node which successfully acquires the manager lock gets
promoted to the CRM master.
It can be in three states:
	
wait for agent lock

	
The CRM waits for our exclusive lock. This is also used as idle state if no
service is configured

	
active

	
The CRM holds its exclusive lock and has services configured

	
lost agent lock

	
The CRM lost its lock, this means a failure happened and quorum was lost.

Its main task is to manage the services which are configured to be highly
available and try to always enforce the requested state. For example, a
service with the requested state started will be started if its not
already running. If it crashes it will be automatically started again.
Thus the CRM dictates the actions the LRM needs to execute.
When a node leaves the cluster quorum, its state changes to unknown.
If the current CRM can then secure the failed node’s lock, the services
will be stolen and restarted on another node.
When a cluster member determines that it is no longer in the cluster
quorum, the LRM waits for a new quorum to form. As long as there is no
quorum the node cannot reset the watchdog. This will trigger a reboot
after the watchdog times out (this happens after 60 seconds).

15.5. HA Simulator

[image: screenshot/gui-ha-manager-status.png]
By using the HA simulator you can test and learn all functionalities of the
Proxmox VE HA solutions.
By default, the simulator allows you to watch and test the behaviour of a
real-world 3 node cluster with 6 VMs. You can also add or remove additional VMs
or Container.
You do not have to setup or configure a real cluster, the HA simulator runs out
of the box.
Install with apt:
apt install pve-ha-simulator
You can even install the package on any Debian-based system without any
other Proxmox VE packages. For that you will need to download the package and
copy it to the system you want to run it on for installation. When you install
the package with apt from the local file system it will also resolve the
required dependencies for you.
To start the simulator on a remote machine you must have an X11 redirection to
your current system.
If you are on a Linux machine you can use:
ssh root@<IPofPVE> -Y
On Windows it works with mobaxterm.
After connecting to an existing Proxmox VE with the simulator installed or
installing it on your local Debian-based system manually, you can try it out as
follows.
First you need to create a working directory where the simulator saves its
current state and writes its default config:
mkdir working
Then, simply pass the created directory as a parameter to pve-ha-simulator:
pve-ha-simulator working/
You can then start, stop, migrate the simulated HA services, or even check out
what happens on a node failure.

15.6. Configuration

The HA stack is well integrated into the Proxmox VE API. So, for example,
HA can be configured via the ha-manager command-line interface, or
the Proxmox VE web interface - both interfaces provide an easy way to
manage HA. Automation tools can use the API directly.
All HA configuration files are within /etc/pve/ha/, so they get
automatically distributed to the cluster nodes, and all nodes share
the same HA configuration.
15.6.1. Resources

[image: screenshot/gui-ha-manager-status.png]
The resource configuration file /etc/pve/ha/resources.cfg stores
the list of resources managed by ha-manager. A resource configuration
inside that list looks like this:
<type>: <name>
 <property> <value>
 ...
It starts with a resource type followed by a resource specific name,
separated with colon. Together this forms the HA resource ID, which is
used by all ha-manager commands to uniquely identify a resource
(example: vm:100 or ct:101). The next lines contain additional
properties:
	
comment: <string>

	
Description.

	
group: <string>

	
The HA group identifier.

	
max_relocate: <integer> (0 - N) (default = 1)

	
Maximal number of service relocate tries when a service failes to start.

	
max_restart: <integer> (0 - N) (default = 1)

	
Maximal number of tries to restart the service on a node after its start failed.

	
state: <disabled | enabled | ignored | started | stopped> (default = started)

	
Requested resource state. The CRM reads this state and acts accordingly.
Please note that enabled is just an alias for started.

	
started

	The CRM tries to start the resource. Service state is
set to started after successful start. On node failures, or when start
fails, it tries to recover the resource. If everything fails, service
state it set to error.
	
stopped

	The CRM tries to keep the resource in stopped state, but it
still tries to relocate the resources on node failures.
	
disabled

	The CRM tries to put the resource in stopped state, but does not try
to relocate the resources on node failures. The main purpose of this
state is error recovery, because it is the only way to move a resource out
of the error state.
	
ignored

	The resource gets removed from the manager status and so the CRM and the LRM do
not touch the resource anymore. All {pve} API calls affecting this resource
will be executed, directly bypassing the HA stack. CRM commands will be thrown
away while there source is in this state. The resource will not get relocated
on node failures.

Here is a real world example with one VM and one container. As you see,
the syntax of those files is really simple, so it is even possible to
read or edit those files using your favorite editor:
Configuration Example (/etc/pve/ha/resources.cfg).

vm: 501
 state started
 max_relocate 2

ct: 102
 # Note: use default settings for everything

[image: screenshot/gui-ha-manager-add-resource.png]
The above config was generated using the ha-manager command-line tool:
ha-manager add vm:501 --state started --max_relocate 2
ha-manager add ct:102

15.6.2. Groups

[image: screenshot/gui-ha-manager-groups-view.png]
The HA group configuration file /etc/pve/ha/groups.cfg is used to
define groups of cluster nodes. A resource can be restricted to run
only on the members of such group. A group configuration look like
this:
group: <group>
 nodes <node_list>
 <property> <value>
 ...
	
comment: <string>

	
Description.

	
nodes: <node>[:<pri>]{,<node>[:<pri>]}*

	
List of cluster node members, where a priority can be given to each node. A resource bound to a group will run on the available nodes with the highest priority. If there are more nodes in the highest priority class, the services will get distributed to those nodes. The priorities have a relative meaning only.

	
nofailback: <boolean> (default = 0)

	
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.

	
restricted: <boolean> (default = 0)

	
Resources bound to restricted groups may only run on nodes defined by the group. The resource will be placed in the stopped state if no group node member is online. Resources on unrestricted groups may run on any cluster node if all group members are offline, but they will migrate back as soon as a group member comes online. One can implement a preferred node behavior using an unrestricted group with only one member.

[image: screenshot/gui-ha-manager-add-group.png]
A common requirement is that a resource should run on a specific
node. Usually the resource is able to run on other nodes, so you can define
an unrestricted group with a single member:
ha-manager groupadd prefer_node1 --nodes node1
For bigger clusters, it makes sense to define a more detailed failover
behavior. For example, you may want to run a set of services on
node1 if possible. If node1 is not available, you want to run them
equally split on node2 and node3. If those nodes also fail, the
services should run on node4. To achieve this you could set the node
list to:
ha-manager groupadd mygroup1 -nodes "node1:2,node2:1,node3:1,node4"
Another use case is if a resource uses other resources only available
on specific nodes, lets say node1 and node2. We need to make sure
that HA manager does not use other nodes, so we need to create a
restricted group with said nodes:
ha-manager groupadd mygroup2 -nodes "node1,node2" -restricted
The above commands created the following group configuration file:
Configuration Example (/etc/pve/ha/groups.cfg).

group: prefer_node1
 nodes node1

group: mygroup1
 nodes node2:1,node4,node1:2,node3:1

group: mygroup2
 nodes node2,node1
 restricted 1

The nofailback options is mostly useful to avoid unwanted resource
movements during administration tasks. For example, if you need to
migrate a service to a node which doesn’t have the highest priority in the
group, you need to tell the HA manager not to instantly move this service
back by setting the nofailback option.
Another scenario is when a service was fenced and it got recovered to
another node. The admin tries to repair the fenced node and brings it
up online again to investigate the cause of failure and check if it runs
stably again. Setting the nofailback flag prevents the recovered services from
moving straight back to the fenced node.

15.7. Fencing

On node failures, fencing ensures that the erroneous node is
guaranteed to be offline. This is required to make sure that no
resource runs twice when it gets recovered on another node. This is a
really important task, because without this, it would not be possible to
recover a resource on another node.
If a node did not get fenced, it would be in an unknown state where
it may have still access to shared resources. This is really
dangerous! Imagine that every network but the storage one broke. Now,
while not reachable from the public network, the VM still runs and
writes to the shared storage.
If we then simply start up this VM on another node, we would get a
dangerous race condition, because we write from both nodes. Such
conditions can destroy all VM data and the whole VM could be rendered
unusable. The recovery could also fail if the storage protects against
multiple mounts.
15.7.1. How Proxmox VE Fences

There are different methods to fence a node, for example, fence
devices which cut off the power from the node or disable their
communication completely. Those are often quite expensive and bring
additional critical components into a system, because if they fail you
cannot recover any service.
We thus wanted to integrate a simpler fencing method, which does not
require additional external hardware. This can be done using
watchdog timers.
Possible Fencing Methods
	
external power switches

	
isolate nodes by disabling complete network traffic on the switch

	
self fencing using watchdog timers

Watchdog timers have been widely used in critical and dependable systems
since the beginning of microcontrollers. They are often simple, independent
integrated circuits which are used to detect and recover from computer malfunctions.
During normal operation, ha-manager regularly resets the watchdog
timer to prevent it from elapsing. If, due to a hardware fault or
program error, the computer fails to reset the watchdog, the timer
will elapse and trigger a reset of the whole server (reboot).
Recent server motherboards often include such hardware watchdogs, but
these need to be configured. If no watchdog is available or
configured, we fall back to the Linux Kernel softdog. While still
reliable, it is not independent of the servers hardware, and thus has
a lower reliability than a hardware watchdog.

15.7.2. Configure Hardware Watchdog

By default, all hardware watchdog modules are blocked for security
reasons. They are like a loaded gun if not correctly initialized. To
enable a hardware watchdog, you need to specify the module to load in
/etc/default/pve-ha-manager, for example:
select watchdog module (default is softdog)
WATCHDOG_MODULE=iTCO_wdt
This configuration is read by the watchdog-mux service, which loads
the specified module at startup.

15.7.3. Recover Fenced Services

After a node failed and its fencing was successful, the CRM tries to
move services from the failed node to nodes which are still online.
The selection of nodes, on which those services gets recovered, is
influenced by the resource group settings, the list of currently active
nodes, and their respective active service count.
The CRM first builds a set out of the intersection between user selected
nodes (from group setting) and available nodes. It then choose the
subset of nodes with the highest priority, and finally select the node
with the lowest active service count. This minimizes the possibility
of an overloaded node.
Caution
On node failure, the CRM distributes services to the
remaining nodes. This increases the service count on those nodes, and
can lead to high load, especially on small clusters. Please design
your cluster so that it can handle such worst case scenarios.

15.8. Start Failure Policy

The start failure policy comes into effect if a service failed to start on a
node one or more times. It can be used to configure how often a restart
should be triggered on the same node and how often a service should be
relocated, so that it has an attempt to be started on another node.
The aim of this policy is to circumvent temporary unavailability of shared
resources on a specific node. For example, if a shared storage isn’t available
on a quorate node anymore, for instance due to network problems, but is still
available on other nodes, the relocate policy allows the service to start
nonetheless.
There are two service start recover policy settings which can be configured
specific for each resource.
	
max_restart

	
Maximum number of attempts to restart a failed service on the actual
node. The default is set to one.

	
max_relocate

	
Maximum number of attempts to relocate the service to a different node.
A relocate only happens after the max_restart value is exceeded on the
actual node. The default is set to one.

Note
The relocate count state will only reset to zero when the
service had at least one successful start. That means if a service is
re-started without fixing the error only the restart policy gets
repeated.

15.9. Error Recovery

If, after all attempts, the service state could not be recovered, it gets
placed in an error state. In this state, the service won’t get touched
by the HA stack anymore. The only way out is disabling a service:
ha-manager set vm:100 --state disabled
This can also be done in the web interface.
To recover from the error state you should do the following:
	
bring the resource back into a safe and consistent state (e.g.:
kill its process if the service could not be stopped)

	
disable the resource to remove the error flag

	
fix the error which led to this failures

	
after you fixed all errors you may request that the service starts again

15.10. Package Updates

When updating the ha-manager, you should do one node after the other, never
all at once for various reasons. First, while we test our software
thoroughly, a bug affecting your specific setup cannot totally be ruled out.
Updating one node after the other and checking the functionality of each node
after finishing the update helps to recover from eventual problems, while
updating all at once could result in a broken cluster and is generally not
good practice.
Also, the Proxmox VE HA stack uses a request acknowledge protocol to perform
actions between the cluster and the local resource manager. For restarting,
the LRM makes a request to the CRM to freeze all its services. This prevents
them from getting touched by the Cluster during the short time the LRM is restarting.
After that, the LRM may safely close the watchdog during a restart.
Such a restart happens normally during a package update and, as already stated,
an active master CRM is needed to acknowledge the requests from the LRM. If
this is not the case the update process can take too long which, in the worst
case, may result in a reset triggered by the watchdog.

15.11. Node Maintenance

Sometimes it is necessary to perform maintenance on a node, such as replacing
hardware or simply installing a new kernel image. This also applies while the
HA stack is in use.
The HA stack can support you mainly in two types of maintenance:
	
for general shutdowns or reboots, the behavior can be configured, see
 Shutdown Policy.

	
for maintenance that does not require a shutdown or reboot, or that should
 not be switched off automatically after only one reboot, you can enable the
 manual maintenance mode.

15.11.1. Maintenance Mode

You can use the manual maintenance mode to mark the node as unavailable for HA
operation, prompting all services managed by HA to migrate to other nodes.
The target nodes for these migrations are selected from the other currently
available nodes, and determined by the HA group configuration and the configured
cluster resource scheduler (CRS) mode.
During each migration, the original node will be recorded in the HA managers'
state, so that the service can be moved back again automatically once the
maintenance mode is disabled and the node is back online.
Currently you can enabled or disable the maintenance mode using the ha-manager
CLI tool.
Enabling maintenance mode for a node.

ha-manager crm-command node-maintenance enable NODENAME

This will queue a CRM command, when the manager processes this command it will
record the request for maintenance-mode in the manager status. This allows you
to submit the command on any node, not just on the one you want to place in, or
out of the maintenance mode.
Once the LRM on the respective node picks the command up it will mark itself as
unavailable, but still process all migration commands. This means that the LRM
self-fencing watchdog will stay active until all active services got moved, and
all running workers finished.
Note that the LRM status will read maintenance mode as soon as the LRM
picked the requested state up, not only when all services got moved away, this
user experience is planned to be improved in the future.
For now, you can check for any active HA service left on the node, or watching
out for a log line like: pve-ha-lrm[PID]: watchdog closed (disabled) to know
when the node finished its transition into the maintenance mode.
Note
The manual maintenance mode is not automatically deleted on node reboot,
but only if it is either manually deactivated using the ha-manager CLI or if
the manager-status is manually cleared.

Disabling maintenance mode for a node.

ha-manager crm-command node-maintenance disable NODENAME

The process of disabling the manual maintenance mode is similar to enabling it.
Using the ha-manager CLI command shown above will queue a CRM command that,
once processed, marks the respective LRM node as available again.
If you deactivate the maintenance mode, all services that were on the node when
the maintenance mode was activated will be moved back.

15.11.2. Shutdown Policy

Below you will find a description of the different HA policies for a node
shutdown. Currently Conditional is the default due to backward compatibility.
Some users may find that Migrate behaves more as expected.
The shutdown policy can be configured in the Web UI (Datacenter → Options
→ HA Settings), or directly in datacenter.cfg:
ha: shutdown_policy=<value>
Migrate

Once the Local Resource manager (LRM) gets a shutdown request and this policy
is enabled, it will mark itself as unavailable for the current HA manager.
This triggers a migration of all HA Services currently located on this node.
The LRM will try to delay the shutdown process, until all running services get
moved away. But, this expects that the running services can be migrated to
another node. In other words, the service must not be locally bound, for example
by using hardware passthrough. As non-group member nodes are considered as
runnable target if no group member is available, this policy can still be used
when making use of HA groups with only some nodes selected. But, marking a group
as restricted tells the HA manager that the service cannot run outside of the
chosen set of nodes. If all of those nodes are unavailable, the shutdown will
hang until you manually intervene. Once the shut down node comes back online
again, the previously displaced services will be moved back, if they were not
already manually migrated in-between.
Note
The watchdog is still active during the migration process on shutdown.
If the node loses quorum it will be fenced and the services will be recovered.

If you start a (previously stopped) service on a node which is currently being
maintained, the node needs to be fenced to ensure that the service can be moved
and started on another available node.

Failover

This mode ensures that all services get stopped, but that they will also be
recovered, if the current node is not online soon. It can be useful when doing
maintenance on a cluster scale, where live-migrating VMs may not be possible if
too many nodes are powered off at a time, but you still want to ensure HA
services get recovered and started again as soon as possible.

Freeze

This mode ensures that all services get stopped and frozen, so that they won’t
get recovered until the current node is online again.

Conditional

The Conditional shutdown policy automatically detects if a shutdown or a
reboot is requested, and changes behaviour accordingly.
Shutdown. A shutdown (poweroff) is usually done if it is planned for the node to stay
down for some time. The LRM stops all managed services in this case. This means
that other nodes will take over those services afterwards.
Note
Recent hardware has large amounts of memory (RAM). So we stop all
resources, then restart them to avoid online migration of all that RAM. If you
want to use online migration, you need to invoke that manually before you
shutdown the node.

Reboot. Node reboots are initiated with the reboot command. This is usually done
after installing a new kernel. Please note that this is different from
“shutdown”, because the node immediately starts again.
The LRM tells the CRM that it wants to restart, and waits until the CRM puts
all resources into the freeze state (same mechanism is used for
Package Updates). This prevents those resources
from being moved to other nodes. Instead, the CRM starts the resources after the
reboot on the same node.

Manual Resource Movement

Last but not least, you can also manually move resources to other nodes, before
you shutdown or restart a node. The advantage is that you have full control,
and you can decide if you want to use online migration or not.
Note
Please do not kill services like pve-ha-crm, pve-ha-lrm or
watchdog-mux. They manage and use the watchdog, so this can result in an
immediate node reboot or even reset.

15.12. Cluster Resource Scheduling

The cluster resource scheduler (CRS) mode controls how HA selects nodes for the
recovery of a service as well as for migrations that are triggered by a
shutdown policy. The default mode is basic, you can change it in the Web UI
(Datacenter → Options), or directly in datacenter.cfg:
crs: ha=static
[image: screenshot/gui-datacenter-options-crs.png]
The change will be in effect starting with the next manager round (after a few
seconds).
For each service that needs to be recovered or migrated, the scheduler
iteratively chooses the best node among the nodes with the highest priority in
the service’s group.
Note
There are plans to add modes for (static and dynamic) load-balancing in
the future.

15.12.1. Basic Scheduler

The number of active HA services on each node is used to choose a recovery node.
Non-HA-managed services are currently not counted.

15.12.2. Static-Load Scheduler

Important
The static mode is still a technology preview.

Static usage information from HA services on each node is used to choose a
recovery node. Usage of non-HA-managed services is currently not considered.
For this selection, each node in turn is considered as if the service was
already running on it, using CPU and memory usage from the associated guest
configuration. Then for each such alternative, CPU and memory usage of all nodes
are considered, with memory being weighted much more, because it’s a truly
limited resource. For both, CPU and memory, highest usage among nodes (weighted
more, as ideally no node should be overcommitted) and average usage of all nodes
(to still be able to distinguish in case there already is a more highly
committed node) are considered.
Important
The more services the more possible combinations there are, so it’s
currently not recommended to use it if you have thousands of HA managed
services.

15.12.3. CRS Scheduling Points

The CRS algorithm is not applied for every service in every round, since this
would mean a large number of constant migrations. Depending on the workload,
this could put more strain on the cluster than could be avoided by constant
balancing.
That’s why the Proxmox VE HA manager favors keeping services on their current node.
The CRS is currently used at the following scheduling points:
	
Service recovery (always active). When a node with active HA services fails,
 all its services need to be recovered to other nodes. The CRS algorithm will
 be used here to balance that recovery over the remaining nodes.

	
HA group config changes (always active). If a node is removed from a group,
 or its priority is reduced, the HA stack will use the CRS algorithm to find a
 new target node for the HA services in that group, matching the adapted
 priority constraints.

	
HA service stopped → start transtion (opt-in). Requesting that a stopped
 service should be started is an good opportunity to check for the best suited
 node as per the CRS algorithm, as moving stopped services is cheaper to do
 than moving them started, especially if their disk volumes reside on shared
 storage. You can enable this by setting the ha-rebalance-on-start
 CRS option in the datacenter config. You can change that option also in the
 Web UI, under Datacenter → Options → Cluster Resource Scheduling.

Chapter 16. Backup and Restore

Backups are a requirement for any sensible IT deployment, and Proxmox VE
provides a fully integrated solution, using the capabilities of each
storage and each guest system type. This allows the system
administrator to fine tune via the mode option between consistency
of the backups and downtime of the guest system.
Proxmox VE backups are always full backups - containing the VM/CT
configuration and all data. Backups can be started via the GUI or via
the vzdump command-line tool.
Backup Storage. Before a backup can run, a backup storage must be defined. Refer to the
storage documentation on how to add a storage. It can
either be a Proxmox Backup Server storage, where backups are stored as
de-duplicated chunks and metadata, or a file-level storage, where backups are
stored as regular files. Using Proxmox Backup Server on a dedicated host is
recommended, because of its advanced features. Using an NFS server is a good
alternative. In both cases, you might want to save those backups later to a tape
drive, for off-site archiving.
Scheduled Backup. Backup jobs can be scheduled so that they are executed automatically on specific
days and times, for selectable nodes and guest systems. See the
Backup Jobs section for more.

16.1. Backup Modes

There are several ways to provide consistency (option mode),
depending on the guest type.
Backup modes for VMs:
	
stop mode

	
This mode provides the highest consistency of the backup, at the cost
of a short downtime in the VM operation. It works by executing an
orderly shutdown of the VM, and then runs a background QEMU process to
backup the VM data. After the backup is started, the VM goes to full
operation mode if it was previously running. Consistency is guaranteed
by using the live backup feature.

	
suspend mode

	
This mode is provided for compatibility reason, and suspends the VM
before calling the snapshot mode. Since suspending the VM results in
a longer downtime and does not necessarily improve the data
consistency, the use of the snapshot mode is recommended instead.

	
snapshot mode

	
This mode provides the lowest operation downtime, at the cost of a
small inconsistency risk. It works by performing a Proxmox VE live
backup, in which data blocks are copied while the VM is running. If the
guest agent is enabled (agent: 1) and running, it calls
guest-fsfreeze-freeze and guest-fsfreeze-thaw to improve
consistency.

A technical overview of the Proxmox VE live backup for QemuServer can
be found online
here.
Note
Proxmox VE live backup provides snapshot-like semantics on any
storage type. It does not require that the underlying storage supports
snapshots. Also please note that since the backups are done via
a background QEMU process, a stopped VM will appear as running for a
short amount of time while the VM disks are being read by QEMU.
However the VM itself is not booted, only its disk(s) are read.

Backup modes for Containers:
	
stop mode

	
Stop the container for the duration of the backup. This potentially
results in a very long downtime.

	
suspend mode

	
This mode uses rsync to copy the container data to a temporary
location (see option --tmpdir). Then the container is suspended and
a second rsync copies changed files. After that, the container is
started (resumed) again. This results in minimal downtime, but needs
additional space to hold the container copy.

When the container is on a local file system and the target storage of
the backup is an NFS/CIFS server, you should set --tmpdir to reside on a
local file system too, as this will result in a many fold performance
improvement. Use of a local tmpdir is also required if you want to
backup a local container using ACLs in suspend mode if the backup
storage is an NFS server.

	
snapshot mode

	
This mode uses the snapshotting facilities of the underlying
storage. First, the container will be suspended to ensure data consistency.
A temporary snapshot of the container’s volumes will be made and the
snapshot content will be archived in a tar file. Finally, the temporary
snapshot is deleted again.

Note
snapshot mode requires that all backed up volumes are on a storage that
supports snapshots. Using the backup=no mount point option individual volumes
can be excluded from the backup (and thus this requirement).

Note
By default additional mount points besides the Root Disk mount point are
not included in backups. For volume mount points you can set the Backup option
to include the mount point in the backup. Device and bind mounts are never
backed up as their content is managed outside the Proxmox VE storage library.

16.2. Backup File Names

Newer versions of vzdump encode the guest type and the
backup time into the filename, for example
vzdump-lxc-105-2009_10_09-11_04_43.tar
That way it is possible to store several backup in the same directory. You can
limit the number of backups that are kept with various retention options, see
the Backup Retention section below.

16.3. Backup File Compression

The backup file can be compressed with one of the following algorithms: lzo
[54], gzip [55] or zstd
[56].
Currently, Zstandard (zstd) is the fastest of these three algorithms.
Multi-threading is another advantage of zstd over lzo and gzip. Lzo and gzip
are more widely used and often installed by default.
You can install pigz [57] as a drop-in replacement for gzip to provide better
performance due to multi-threading. For pigz & zstd, the amount of
threads/cores can be adjusted. See the
configuration options below.
The extension of the backup file name can usually be used to determine which
compression algorithm has been used to create the backup.
	.zst
	Zstandard (zstd) compression

	.gz or .tgz
	gzip compression

	.lzo
	lzo compression

If the backup file name doesn’t end with one of the above file extensions, then
it was not compressed by vzdump.

[54] Lempel–Ziv–Oberhumer a lossless data compression algorithm
https://en.wikipedia.org/wiki/Lempel-Ziv-Oberhumer

[55] gzip -
based on the DEFLATE algorithm https://en.wikipedia.org/wiki/Gzip

[56] Zstandard a lossless data compression algorithm
https://en.wikipedia.org/wiki/Zstandard

[57] pigz - parallel implementation of gzip
https://zlib.net/pigz/

16.4. Backup Encryption

For Proxmox Backup Server storages, you can optionally set up client-side
encryption of backups, see the corresponding section.

16.5. Backup Jobs

Besides triggering a backup manually, you can also setup periodic jobs that
backup all, or a selection of virtual guest to a storage. You can manage the
jobs in the UI under Datacenter → Backup or via the /cluster/backup API
endpoint. Both will generate job entries in /etc/pve/jobs.cfg, which are
parsed and executed by the pvescheduler daemon.
A job is either configured for all cluster nodes or a specific node, and is
executed according to a given schedule. The format for the schedule is very
similar to systemd calendar events, see the
calendar events section for details. The
Schedule field in the UI can be freely edited, and it contains several
examples that can be used as a starting point in its drop-down list.
You can configure job-specific retention options
overriding those from the storage or node configuration, as well as a
template for notes for additional information to be saved
together with the backup.
Since scheduled backups miss their execution when the host was offline or the
pvescheduler was disabled during the scheduled time, it is possible to configure
the behaviour for catching up. By enabling the Repeat missed option
(repeat-missed in the config), you can tell the scheduler that it should run
missed jobs as soon as possible.
There are a few settings for tuning backup performance not exposed in the UI.
The most notable is bwlimit for limiting IO bandwidth. The amount of threads
used for the compressor can be controlled with the pigz (replacing gzip),
respectively, zstd setting. Furthermore, there are ionice and, as part of
the performance setting, max-workers (affects VM backups only) and
pbs-entries-max (affects container backups only). See the
configuration options for details.

16.6. Backup Retention

With the prune-backups option you can specify which backups you want to keep
in a flexible manner. The following retention options are available:
	
keep-all <boolean>

	
Keep all backups. If this is true, no other options can be set.

	
keep-last <N>

	
Keep the last <N> backups.

	
keep-hourly <N>

	
Keep backups for the last <N> hours. If there is more than one
backup for a single hour, only the latest is kept.

	
keep-daily <N>

	
Keep backups for the last <N> days. If there is more than one
backup for a single day, only the latest is kept.

	
keep-weekly <N>

	
Keep backups for the last <N> weeks. If there is more than one
backup for a single week, only the latest is kept.

Note
Weeks start on Monday and end on Sunday. The software uses the
ISO week date-system and handles weeks at the end of the year correctly.

	
keep-monthly <N>

	
Keep backups for the last <N> months. If there is more than one
backup for a single month, only the latest is kept.

	
keep-yearly <N>

	
Keep backups for the last <N> years. If there is more than one
backup for a single year, only the latest is kept.

The retention options are processed in the order given above. Each option
only covers backups within its time period. The next option does not take care
of already covered backups. It will only consider older backups.
Specify the retention options you want to use as a
comma-separated list, for example:
vzdump 777 --prune-backups keep-last=3,keep-daily=13,keep-yearly=9
While you can pass prune-backups directly to vzdump, it is often more
sensible to configure the setting on the storage level, which can be done via
the web interface.
Note
The old maxfiles option is deprecated and should be replaced either by
keep-last or, in case maxfiles was 0 for unlimited retention, by
keep-all.

16.6.1. Prune Simulator

You can use the prune simulator
of the Proxmox Backup Server documentation to explore the effect of different
retention options with various backup schedules.

16.6.2. Retention Settings Example

The backup frequency and retention of old backups may depend on how often data
changes, and how important an older state may be, in a specific work load.
When backups act as a company’s document archive, there may also be legal
requirements for how long backups must be kept.
For this example, we assume that you are doing daily backups, have a retention
period of 10 years, and the period between backups stored gradually grows.
keep-last=3 - even if only daily backups are taken, an admin may want to
 create an extra one just before or after a big upgrade. Setting keep-last
 ensures this.
keep-hourly is not set - for daily backups this is not relevant. You cover
 extra manual backups already, with keep-last.
keep-daily=13 - together with keep-last, which covers at least one
 day, this ensures that you have at least two weeks of backups.
keep-weekly=8 - ensures that you have at least two full months of
 weekly backups.
keep-monthly=11 - together with the previous keep settings, this
 ensures that you have at least a year of monthly backups.
keep-yearly=9 - this is for the long term archive. As you covered the
 current year with the previous options, you would set this to nine for the
 remaining ones, giving you a total of at least 10 years of coverage.
We recommend that you use a higher retention period than is minimally required
by your environment; you can always reduce it if you find it is unnecessarily
high, but you cannot recreate backups once they have been removed.

16.7. Backup Protection

You can mark a backup as protected to prevent its removal. Attempting to
remove a protected backup via Proxmox VE’s UI, CLI or API will fail. However, this
is enforced by Proxmox VE and not the file-system, that means that a manual removal
of a backup file itself is still possible for anyone with write access to the
underlying backup storage.
Note
Protected backups are ignored by pruning and do not count towards the
retention settings.

For filesystem-based storages, the protection is implemented via a sentinel file
<backup-name>.protected. For Proxmox Backup Server, it is handled on the
server side (available since Proxmox Backup Server version 2.1).
Use the storage option max-protected-backups to control how many protected
backups per guest are allowed on the storage. Use -1 for unlimited. The
default is unlimited for users with Datastore.Allocate privilege and 5 for
other users.

16.8. Backup Notes

You can add notes to backups using the Edit Notes button in the UI or via the
storage content API.
It is also possible to specify a template for generating notes dynamically for
a backup job and for manual backup. The template string can contain variables,
surrounded by two curly braces, which will be replaced by the corresponding
value when the backup is executed.
Currently supported are:
	
{{cluster}} the cluster name, if any

	
{{guestname}} the virtual guest’s assigned name

	
{{node}} the host name of the node the backup is being created

	
{{vmid}} the numerical VMID of the guest

When specified via API or CLI, it needs to be a single line, where newline and
backslash need to be escaped as literal \n and \\ respectively.

16.9. Restore

A backup archive can be restored through the Proxmox VE web GUI or through the
following CLI tools:
	
pct restore

	
Container restore utility

	
qmrestore

	
Virtual Machine restore utility

For details see the corresponding manual pages.
16.9.1. Bandwidth Limit

Restoring one or more big backups may need a lot of resources, especially
storage bandwidth for both reading from the backup storage and writing to
the target storage. This can negatively affect other virtual guests as access
to storage can get congested.
To avoid this you can set bandwidth limits for a backup job. Proxmox VE
implements two kinds of limits for restoring and archive:
	
per-restore limit: denotes the maximal amount of bandwidth for
 reading from a backup archive

	
per-storage write limit: denotes the maximal amount of bandwidth used for
 writing to a specific storage

The read limit indirectly affects the write limit, as we cannot write more
than we read. A smaller per-job limit will overwrite a bigger per-storage
limit. A bigger per-job limit will only overwrite the per-storage limit if
you have ‘Data.Allocate’ permissions on the affected storage.
You can use the ‘--bwlimit <integer>` option from the restore CLI commands
to set up a restore job specific bandwidth limit. KiB/s is used as unit
for the limit, this means passing `10240’ will limit the read speed of the
backup to 10 MiB/s, ensuring that the rest of the possible storage bandwidth
is available for the already running virtual guests, and thus the backup
does not impact their operations.
Note
You can use ‘0` for the bwlimit parameter to disable all limits for
a specific restore job. This can be helpful if you need to restore a very
important virtual guest as fast as possible. (Needs `Data.Allocate’
permissions on storage)

Most times your storage’s generally available bandwidth stays the same over
time, thus we implemented the possibility to set a default bandwidth limit
per configured storage, this can be done with:
pvesm set STORAGEID --bwlimit restore=KIBs

16.9.2. Live-Restore

Restoring a large backup can take a long time, in which a guest is still
unavailable. For VM backups stored on a Proxmox Backup Server, this wait
time can be mitigated using the live-restore option.
Enabling live-restore via either the checkbox in the GUI or the --live-restore
argument of qmrestore causes the VM to start as soon as the restore
begins. Data is copied in the background, prioritizing chunks that the VM is
actively accessing.
Note that this comes with two caveats:
	
During live-restore, the VM will operate with limited disk read speeds, as
 data has to be loaded from the backup server (once loaded, it is immediately
 available on the destination storage however, so accessing data twice only
 incurs the penalty the first time). Write speeds are largely unaffected.

	
If the live-restore fails for any reason, the VM will be left in an
 undefined state - that is, not all data might have been copied from the
 backup, and it is most likely not possible to keep any data that was written
 during the failed restore operation.

This mode of operation is especially useful for large VMs, where only a small
amount of data is required for initial operation, e.g. web servers - once the OS
and necessary services have been started, the VM is operational, while the
background task continues copying seldom used data.

16.9.3. Single File Restore

The File Restore button in the Backups tab of the storage GUI can be used to
open a file browser directly on the data contained in a backup. This feature
is only available for backups on a Proxmox Backup Server.
For containers, the first layer of the file tree shows all included pxar
archives, which can be opened and browsed freely. For VMs, the first layer shows
contained drive images, which can be opened to reveal a list of supported
storage technologies found on the drive. In the most basic case, this will be an
entry called part, representing a partition table, which contains entries for
each partition found on the drive. Note that for VMs, not all data might be
accessible (unsupported guest file systems, storage technologies, etc…).
Files and directories can be downloaded using the Download button, the latter
being compressed into a zip archive on the fly.
To enable secure access to VM images, which might contain untrusted data, a
temporary VM (not visible as a guest) is started. This does not mean that data
downloaded from such an archive is inherently safe, but it avoids exposing the
hypervisor system to danger. The VM will stop itself after a timeout. This
entire process happens transparently from a user’s point of view.
Note
For troubleshooting purposes, each temporary VM instance generates a log
file in /var/log/proxmox-backup/file-restore/. The log file might contain
additional information in case an attempt to restore individual files or
accessing file systems contained in a backup archive fails.

16.10. Configuration

Global configuration is stored in /etc/vzdump.conf. The file uses a
simple colon separated key/value format. Each line has the following
format:
OPTION: value
Blank lines in the file are ignored, and lines starting with a #
character are treated as comments and are also ignored. Values from
this file are used as default, and can be overwritten on the command
line.
We currently support the following options:
	
bwlimit: <integer> (0 - N) (default = 0)

	
Limit I/O bandwidth (in KiB/s).

	
compress: <0 | 1 | gzip | lzo | zstd> (default = 0)

	
Compress dump file.

	
dumpdir: <string>

	
Store resulting files to specified directory.

	
exclude-path: <array>

	
Exclude certain files/directories (shell globs). Paths starting with / are anchored to the container’s root, other paths match relative to each subdirectory.

	
ionice: <integer> (0 - 8) (default = 7)

	
Set IO priority when using the BFQ scheduler. For snapshot and suspend mode backups of VMs, this only affects the compressor. A value of 8 means the idle priority is used, otherwise the best-effort priority is used with the specified value.

	
lockwait: <integer> (0 - N) (default = 180)

	
Maximal time to wait for the global lock (minutes).

	
mailnotification: <always | failure> (default = always)

	
Deprecated: use notification targets/matchers instead. Specify when to send a notification mail

	
mailto: <string>

	
Deprecated: Use notification targets/matchers instead. Comma-separated list of email addresses or users that should receive email notifications.

	
maxfiles: <integer> (1 - N)

	
Deprecated: use prune-backups instead. Maximal number of backup files per guest system.

	
mode: <snapshot | stop | suspend> (default = snapshot)

	
Backup mode.

	
notes-template: <string>

	
Template string for generating notes for the backup(s). It can contain variables which will be replaced by their values. Currently supported are {\{\cluster}}, {\{\guestname}}, {\{\node}}, and {\{\vmid}}, but more might be added in the future. Needs to be a single line, newline and backslash need to be escaped as \n and \\ respectively.

Note
Requires option(s): storage

	
notification-mode: <auto | legacy-sendmail | notification-system> (default = auto)

	
Determine which notification system to use. If set to legacy-sendmail, vzdump will consider the mailto/mailnotification parameters and send emails to the specified address(es) via the sendmail command. If set to notification-system, a notification will be sent via PVE’s notification system, and the mailto and mailnotification will be ignored. If set to auto (default setting), an email will be sent if mailto is set, and the notification system will be used if not.

	
notification-policy: <always | failure | never> (default = always)

	
Deprecated: Do not use

	
notification-target: <string>

	
Deprecated: Do not use

	
performance: [max-workers=<integer>] [,pbs-entries-max=<integer>]

	
Other performance-related settings.

	
max-workers=<integer> (1 - 256) (default = 16)

	
Applies to VMs. Allow up to this many IO workers at the same time.

	
pbs-entries-max=<integer> (1 - N) (default = 1048576)

	
Applies to container backups sent to PBS. Limits the number of entries allowed in memory at a given time to avoid unintended OOM situations. Increase it to enable backups of containers with a large amount of files.

	
pigz: <integer> (default = 0)

	
Use pigz instead of gzip when N>0. N=1 uses half of cores, N>1 uses N as thread count.

	
pool: <string>

	
Backup all known guest systems included in the specified pool.

	
protected: <boolean>

	
If true, mark backup(s) as protected.

Note
Requires option(s): storage

	
prune-backups: [keep-all=<1|0>] [,keep-daily=<N>] [,keep-hourly=<N>] [,keep-last=<N>] [,keep-monthly=<N>] [,keep-weekly=<N>] [,keep-yearly=<N>] (default = keep-all=1)

	
Use these retention options instead of those from the storage configuration.

	
keep-all=<boolean>

	
Keep all backups. Conflicts with the other options when true.

	
keep-daily=<N>

	
Keep backups for the last <N> different days. If there is morethan one backup for a single day, only the latest one is kept.

	
keep-hourly=<N>

	
Keep backups for the last <N> different hours. If there is morethan one backup for a single hour, only the latest one is kept.

	
keep-last=<N>

	
Keep the last <N> backups.

	
keep-monthly=<N>

	
Keep backups for the last <N> different months. If there is morethan one backup for a single month, only the latest one is kept.

	
keep-weekly=<N>

	
Keep backups for the last <N> different weeks. If there is morethan one backup for a single week, only the latest one is kept.

	
keep-yearly=<N>

	
Keep backups for the last <N> different years. If there is morethan one backup for a single year, only the latest one is kept.

	
remove: <boolean> (default = 1)

	
Prune older backups according to prune-backups.

	
script: <string>

	
Use specified hook script.

	
stdexcludes: <boolean> (default = 1)

	
Exclude temporary files and logs.

	
stopwait: <integer> (0 - N) (default = 10)

	
Maximal time to wait until a guest system is stopped (minutes).

	
storage: <string>

	
Store resulting file to this storage.

	
tmpdir: <string>

	
Store temporary files to specified directory.

	
zstd: <integer> (default = 1)

	
Zstd threads. N=0 uses half of the available cores, if N is set to a value bigger than 0, N is used as thread count.

Example vzdump.conf Configuration.

tmpdir: /mnt/fast_local_disk
storage: my_backup_storage
mode: snapshot
bwlimit: 10000

16.11. Hook Scripts

You can specify a hook script with option --script. This script is
called at various phases of the backup process, with parameters
accordingly set. You can find an example in the documentation
directory (vzdump-hook-script.pl).

16.12. File Exclusions

Note
this option is only available for container backups.

vzdump skips the following files by default (disable with the option
--stdexcludes 0)
/tmp/?*
/var/tmp/?*
/var/run/?*pid
You can also manually specify (additional) exclude paths, for example:
vzdump 777 --exclude-path /tmp/ --exclude-path '/var/foo*'
excludes the directory /tmp/ and any file or directory named /var/foo,
/var/foobar, and so on.
Paths that do not start with a / are not anchored to the container’s root,
but will match relative to any subdirectory. For example:
vzdump 777 --exclude-path bar
excludes any file or directory named /bar, /var/bar, /var/foo/bar, and
so on, but not /bar2.
Configuration files are also stored inside the backup archive
(in ./etc/vzdump/) and will be correctly restored.

16.13. Examples

Simply dump guest 777 - no snapshot, just archive the guest private area and
configuration files to the default dump directory (usually
/var/lib/vz/dump/).
vzdump 777
Use rsync and suspend/resume to create a snapshot (minimal downtime).
vzdump 777 --mode suspend
Backup all guest systems and send notification mails to root and admin.
Due to mailto being set and notification-mode being set to auto by
default, the notification mails are sent via the system’s sendmail
command instead of the notification system.
vzdump --all --mode suspend --mailto root --mailto admin
Use snapshot mode (no downtime) and non-default dump directory.
vzdump 777 --dumpdir /mnt/backup --mode snapshot
Backup more than one guest (selectively)
vzdump 101 102 103 --mailto root
Backup all guests excluding 101 and 102
vzdump --mode suspend --exclude 101,102
Restore a container to a new CT 600
pct restore 600 /mnt/backup/vzdump-lxc-777.tar
Restore a QemuServer VM to VM 601
qmrestore /mnt/backup/vzdump-qemu-888.vma 601
Clone an existing container 101 to a new container 300 with a 4GB root
file system, using pipes
vzdump 101 --stdout | pct restore --rootfs 4 300 -

Chapter 17. Notifications

17.1. Overview

[image: screenshot/gui-datacenter-notification-overview.png]
Proxmox VE will send notifications if case of noteworthy events in the system.
There are a number of different notification events,
each with their own set of metadata fields that can be used in
notification matchers.
A notification matcher determines
which notifications shall be sent where.
A matcher has match rules, that can be used to
match on certain notification properties (e.g. timestamp, severity,
metadata fields).
If a matcher matches a notification, the notification will be routed
to a configurable set of notification targets.
A notification target is an abstraction for a
destination where a notification should be sent to - for instance,
a Gotify server instance, or a set of email addresses.
There are multiple types of notification targets, including
sendmail, which uses the system’s sendmail command to send emails,
or gotify, which sends a notification to a Gotify instance.
The notification system can be configured in the GUI under
Datacenter → Notifications. The configuration is stored in
/etc/pve/notifications.cfg and /etc/pve/priv/notifications.cfg -
the latter contains sensitive configuration options such as
passwords or authentication tokens for notification targets.

17.2. Notification Targets

17.2.1. Sendmail

[image: screenshot/gui-datacenter-notification-sendmail.png]
The sendmail binary is a program commonly found on Unix-like operating systems
that handles the sending of email messages.
It is a command-line utility that allows users and applications to send emails
directly from the command line or from within scripts.
The sendmail notification target uses the sendmail binary to send emails.
Note
In standard Proxmox VE installations, the sendmail binary is provided by
Postfix. For this type of target to work correctly, it might be necessary to
change Postfix’s configuration so that it can correctly deliver emails.
For cluster setups it is necessary to have a working Postfix configuration on
every single cluster node.

The configuration for Sendmail target plugins has the following options:
	
mailto: E-Mail address to which the notification shall be sent to. Can be
set multiple times to accomodate multiple recipients.

	
mailto-user: Users to which emails shall be sent to. The user’s email
address will be looked up in users.cfg. Can be set multiple times to
accomodate multiple recipients.

	
author: Sets the author of the E-Mail. Defaults to Proxmox VE.

	
from-address: Sets the from address of the E-Mail. If the parameter is not
set, the plugin will fall back to the email_from setting from
datacenter.cfg. If that is also not set, the plugin will default to
root@$hostname, where $hostname is the hostname of the node.

	
comment: Comment for this target
The From header in the email will be set to $author <$from-address>.

Example configuration (/etc/pve/notifications.cfg):
sendmail: example
 mailto-user root@pam
 mailto-user admin@pve
 mailto max@example.com
 from-address pve1@example.com
 comment Send to multiple users/addresses

17.2.2. SMTP

[image: screenshot/gui-datacenter-notification-smtp.png]
SMTP notification targets can send emails directly to an SMTP mail relay.
The configuration for SMTP target plugins has the following options:
	
mailto: E-Mail address to which the notification shall be sent to. Can be
set multiple times to accomodate multiple recipients.

	
mailto-user: Users to which emails shall be sent to. The user’s email
address will be looked up in users.cfg. Can be set multiple times to
accomodate multiple recipients.

	
author: Sets the author of the E-Mail. Defaults to Proxmox VE.

	
from-address: Sets the From-addresss of the email. SMTP relays might require
that this address is owned by the user in order to avoid spoofing.
The From header in the email will be set to $author <$from-address>.

	
username: Username to use during authentication. If no username is set,
no authentication will be performed. The PLAIN and LOGIN authentication methods
are supported.

	
password: Password to use when authenticating.

	
mode: Sets the encryption mode (insecure, starttls or tls). Defaults
to tls.

	
server: Address/IP of the SMTP relay

	
port: The port to connect to. If not set, the used port
defaults to 25 (insecure), 465 (tls) or 587 (starttls), depending on the
value of mode.

	
comment: Comment for this target

Example configuration (/etc/pve/notifications.cfg):
smtp: example
 mailto-user root@pam
 mailto-user admin@pve
 mailto max@example.com
 from-address pve1@example.com
 username pve1
 server mail.example.com
 mode starttls
The matching entry in /etc/pve/priv/notifications.cfg, containing the
secret token:
smtp: example
 password somepassword

17.2.3. Gotify

[image: screenshot/gui-datacenter-notification-gotify.png]
Gotify is an open-source self-hosted notification server that
allows you to send and receive push notifications to various devices and
applications. It provides a simple API and web interface, making it easy to
integrate with different platforms and services.
The configuration for Gotify target plugins has the following options:
	
server: The base URL of the Gotify server, e.g. http://<ip>:8888

	
token: The authentication token. Tokens can be generated within the Gotify
web interface.

	
comment: Comment for this target

Note
The Gotify target plugin will respect the HTTP proxy settings from the
 datacenter configuration

Example configuration (/etc/pve/notifications.cfg):
gotify: example
 server http://gotify.example.com:8888
 comment Send to multiple users/addresses
The matching entry in /etc/pve/priv/notifications.cfg, containing the
secret token:
gotify: example
 token somesecrettoken

17.3. Notification Matchers

[image: screenshot/gui-datacenter-notification-matcher.png]
Notification matchers route notifications to notification targets based
on their matching rules. These rules can match certain properties of a
notification, such as the timestamp (match-calendar), the severity of
the notification (match-severity) or metadata fields (match-field).
If a notification is matched by a matcher, all targets configured for the
matcher will receive the notification.
An arbitrary number of matchers can be created, each with with their own
matching rules and targets to notify.
Every target is notified at most once for every notification, even if
the target is used in multiple matchers.
A matcher without any matching rules is always true; the configured targets
will always be notified.
matcher: always-matches
 target admin
 comment This matcher always matches
17.3.1. Matcher Options

	
target: Determine which target should be notified if the matcher matches.
can be used multiple times to notify multiple targets.

	
invert-match: Inverts the result of the whole matcher

	
mode: Determines how the individual match rules are evaluated to compute
the result for the whole matcher. If set to all, all matching rules must
match. If set to any, at least one rule must match.
a matcher must be true. Defaults to all.

	
match-calendar: Match the notification’s timestamp against a schedule

	
match-field: Match the notification’s metadata fields

	
match-severity: Match the notification’s severity

	
comment: Comment for this matcher

17.3.2. Calendar Matching Rules

A calendar matcher matches the time when a notification is sent agaist a
configurable schedule.
	
match-calendar 8-12

	
match-calendar 8:00-15:30

	
match-calendar mon-fri 9:00-17:00

	
match-calendar sun,tue-wed,fri 9-17

17.3.3. Field Matching Rules

Notifications have a selection of metadata fields that can be matched.
	
match-field exact:type=vzdump Only match notifications about backups.

	
match-field regex:hostname=^.+\.example\.com$ Match the hostname of
the node.

If a matched metadata field does not exist, the notification will not be
matched.
For instance, a match-field regex:hostname=.* directive will only match
notifications that have an arbitraty hostname metadata field, but will
not match if the field does not exist.

17.3.4. Severity Matching Rules

A notification has a associated severity that can be matched.
	
match-severity error: Only match errors

	
match-severity warning,error: Match warnings and error

The following severities are in use:
info, notice, warning, error, unknown.

17.3.5. Examples

matcher: workday
 match-calendar mon-fri 9-17
 target admin
 comment Notify admins during working hours

matcher: night-and-weekend
 match-calendar mon-fri 9-17
 invert-match true
 target on-call-admins
 comment Separate target for non-working hours
matcher: backup-failures
 match-field exact:type=vzdump
 match-severity error
 target backup-admins
 comment Send notifications about backup failures to one group of admins

matcher: cluster-failures
 match-field exact:type=replication
 match-field exact:type=fencing
 mode any
 target cluster-admins
 comment Send cluster-related notifications to other group of admins
The last matcher could also be rewritten using a field matcher with a regular
expression:
matcher: cluster-failures
 match-field regex:type=^(replication|fencing)$
 target cluster-admins
 comment Send cluster-related notifications to other group of admins

17.4. Notification Events

	 Event 	 type 	 Severity 	 Metadata fields (in addition to type)
	System updates available
	package-updates
	info
	hostname

	Cluster node fenced
	fencing
	error
	hostname

	Storage replication failed
	replication
	error
	-

	Backup finished
	vzdump
	info (error on failure)
	hostname

	Mail for root
	system-mail
	unknown
	-

	 Field name 	 Description
	type
	Type of the notifcation

	hostname
	Hostname, including domain (e.g. pve1.example.com)

17.5. System Mail Forwarding

Certain local system daemons, such as smartd, generate notification emails
that are initially directed to the local root user. Proxmox VE will
feed these mails into the notification system as a notification of
type system-mail and with severity unknown.
When the forwarding process involves an email-based target
(like sendmail or smtp), the email is forwarded exactly as received, with all
original mail headers remaining intact. For all other targets,
the system tries to extract both a subject line and the main text body
from the email content. In instances where emails solely consist of HTML
content, they will be transformed into plain text format during this process.

17.6. Permissions

In order to modify/view the configuration for notification targets,
the Mapping.Modify/Mapping.Audit permissions are required for the
/mapping/notifications ACL node.
Testing a target requires Mapping.Use, Mapping.Audit or Mapping.Modify
permissions on /mapping/notifications

Chapter 18. Important Service Daemons

18.1. pvedaemon - Proxmox VE API Daemon

This daemon exposes the whole Proxmox VE API on 127.0.0.1:85. It runs as
root and has permission to do all privileged operations.
Note
The daemon listens to a local address only, so you cannot access
it from outside. The pveproxy daemon exposes the API to the outside
world.

18.2. pveproxy - Proxmox VE API Proxy Daemon

This daemon exposes the whole Proxmox VE API on TCP port 8006 using HTTPS. It runs
as user www-data and has very limited permissions. Operation requiring more
permissions are forwarded to the local pvedaemon.
Requests targeted for other nodes are automatically forwarded to those nodes.
This means that you can manage your whole cluster by connecting to a single
Proxmox VE node.
18.2.1. Host based Access Control

It is possible to configure “apache2”-like access control lists. Values are
read from file /etc/default/pveproxy. For example:
ALLOW_FROM="10.0.0.1-10.0.0.5,192.168.0.0/22"
DENY_FROM="all"
POLICY="allow"
IP addresses can be specified using any syntax understood by Net::IP. The
name all is an alias for 0/0 and ::/0 (meaning all IPv4 and IPv6
addresses).
The default policy is allow.
	 Match 	 POLICY=deny 	 POLICY=allow
	Match Allow only
	allow
	allow

	Match Deny only
	deny
	deny

	No match
	deny
	allow

	Match Both Allow & Deny
	deny
	allow

18.2.2. Listening IP Address

By default the pveproxy and spiceproxy daemons listen on the wildcard
address and accept connections from both IPv4 and IPv6 clients.
By setting LISTEN_IP in /etc/default/pveproxy you can control to which IP
address the pveproxy and spiceproxy daemons bind. The IP-address needs to
be configured on the system.
Setting the sysctl net.ipv6.bindv6only to the non-default 1 will cause
the daemons to only accept connection from IPv6 clients, while usually also
causing lots of other issues. If you set this configuration we recommend to
either remove the sysctl setting, or set the LISTEN_IP to 0.0.0.0 (which
will only allow IPv4 clients).
LISTEN_IP can be used to only to restricting the socket to an internal
interface and thus have less exposure to the public internet, for example:
LISTEN_IP="192.0.2.1"
Similarly, you can also set an IPv6 address:
LISTEN_IP="2001:db8:85a3::1"
Note that if you want to specify a link-local IPv6 address, you need to provide
the interface name itself. For example:
LISTEN_IP="fe80::c463:8cff:feb9:6a4e%vmbr0"
Warning
The nodes in a cluster need access to pveproxy for communication,
possibly on different sub-nets. It is not recommended to set LISTEN_IP on
clustered systems.

To apply the change you need to either reboot your node or fully restart the
pveproxy and spiceproxy service:
systemctl restart pveproxy.service spiceproxy.service
Note
Unlike reload, a restart of the pveproxy service can interrupt some
long-running worker processes, for example a running console or shell from a
virtual guest. So, please use a maintenance window to bring this change in
effect.

18.2.3. SSL Cipher Suite

You can define the cipher list in /etc/default/pveproxy via the CIPHERS
(TLS ⇐ 1.2) and CIPHERSUITES (TLS >= 1.3) keys. For example
CIPHERS="ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256"
CIPHERSUITES="TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256"
Above is the default. See the ciphers(1) man page from the openssl
package for a list of all available options.
Additionally, you can set the client to choose the cipher used in
/etc/default/pveproxy (default is the first cipher in the list available to
both client and pveproxy):
HONOR_CIPHER_ORDER=0

18.2.4. Supported TLS versions

The insecure SSL versions 2 and 3 are unconditionally disabled for pveproxy.
TLS versions below 1.1 are disabled by default on recent OpenSSL versions,
which is honored by pveproxy (see /etc/ssl/openssl.cnf).
To disable TLS version 1.2 or 1.3, set the following in /etc/default/pveproxy:
DISABLE_TLS_1_2=1
or, respectively:
DISABLE_TLS_1_3=1
Note
Unless there is a specific reason to do so, it is not recommended to
manually adjust the supported TLS versions.

18.2.5. Diffie-Hellman Parameters

You can define the used Diffie-Hellman parameters in
/etc/default/pveproxy by setting DHPARAMS to the path of a file
containing DH parameters in PEM format, for example
DHPARAMS="/path/to/dhparams.pem"
If this option is not set, the built-in skip2048 parameters will be
used.
Note
DH parameters are only used if a cipher suite utilizing the DH key
exchange algorithm is negotiated.

18.2.6. Alternative HTTPS certificate

You can change the certificate used to an external one or to one obtained via
ACME.
pveproxy uses /etc/pve/local/pveproxy-ssl.pem and
/etc/pve/local/pveproxy-ssl.key, if present, and falls back to
/etc/pve/local/pve-ssl.pem and /etc/pve/local/pve-ssl.key.
The private key may not use a passphrase.
It is possible to override the location of the certificate private key
/etc/pve/local/pveproxy-ssl.key by setting TLS_KEY_FILE in
/etc/default/pveproxy, for example:
TLS_KEY_FILE="/secrets/pveproxy.key"
Note
The included ACME integration does not honor this setting.

See the Host System Administration chapter of the documentation for details.

18.2.7. Response Compression

By default pveproxy uses gzip HTTP-level compression for compressible
content, if the client supports it. This can disabled in /etc/default/pveproxy
COMPRESSION=0

18.3. pvestatd - Proxmox VE Status Daemon

This daemon queries the status of VMs, storages and containers at
regular intervals. The result is sent to all nodes in the cluster.

18.4. spiceproxy - SPICE Proxy Service

SPICE (the Simple Protocol for Independent
Computing Environments) is an open remote computing solution,
providing client access to remote displays and devices (e.g. keyboard,
mouse, audio). The main use case is to get remote access to virtual
machines and container.
This daemon listens on TCP port 3128, and implements an HTTP proxy to
forward CONNECT request from the SPICE client to the correct Proxmox VE
VM. It runs as user www-data and has very limited permissions.
18.4.1. Host based Access Control

It is possible to configure "apache2" like access control
lists. Values are read from file /etc/default/pveproxy.
See pveproxy documentation for details.

18.5. pvescheduler - Proxmox VE Scheduler Daemon

This deamon is responsible for starting jobs according to the schedule,
such as replication and vzdump jobs.
For vzdump jobs, it gets its configuration from the file /etc/pve/jobs.cfg

Chapter 19. Useful Command-line Tools

19.1. pvesubscription - Subscription Management

This tool is used to handle Proxmox VE subscriptions.

19.2. pveperf - Proxmox VE Benchmark Script

Tries to gather some CPU/hard disk performance data on the hard disk
mounted at PATH (/ is used as default):
	
CPU BOGOMIPS

	
bogomips sum of all CPUs

	
REGEX/SECOND

	
regular expressions per second (perl performance test), should
be above 300000

	
HD SIZE

	
hard disk size

	
BUFFERED READS

	
simple HD read test. Modern HDs should reach at least 40
MB/sec

	
AVERAGE SEEK TIME

	
tests average seek time. Fast SCSI HDs reach values < 8
milliseconds. Common IDE/SATA disks get values from 15 to 20 ms.

	
FSYNCS/SECOND

	
value should be greater than 200 (you should enable write
back cache mode on you RAID controller - needs a battery backed cache (BBWC)).

	
DNS EXT

	
average time to resolve an external DNS name

	
DNS INT

	
average time to resolve a local DNS name

19.3. Shell interface for the Proxmox VE API

The Proxmox VE management tool (pvesh) allows to directly invoke API
function, without using the REST/HTTPS server.
Note
Only root is allowed to do that.

19.3.1. EXAMPLES

Get the list of nodes in my cluster
pvesh get /nodes
Get a list of available options for the datacenter
pvesh usage cluster/options -v
Set the HTMl5 NoVNC console as the default console for the datacenter
pvesh set cluster/options -console html5

Chapter 20. Frequently Asked Questions

Note
New FAQs are appended to the bottom of this section.

	20.1.
	
What distribution is Proxmox VE based on?

		
Proxmox VE is based on Debian GNU/Linux

	20.2.
	
What license does the Proxmox VE project use?

		
Proxmox VE code is licensed under the GNU Affero General Public License,
version 3.

	20.3.
	
Will Proxmox VE run on a 32bit processor?

		
Proxmox VE works only on 64-bit CPUs (AMD or Intel). There is no plan
for 32-bit for the platform.

Note
VMs and Containers can be both 32-bit and 64-bit.

	20.4.
	
Does my CPU support virtualization?

		
To check if your CPU is virtualization compatible, check for the vmx
or svm tag in this command output:

egrep '(vmx|svm)' /proc/cpuinfo

	20.5.
	
Supported Intel CPUs

		
64-bit processors with
Intel
Virtualization Technology (Intel VT-x) support.
(List of processors with Intel VT and 64-bit)

	20.6.
	
Supported AMD CPUs

		
64-bit processors with
AMD
Virtualization Technology (AMD-V) support.

	20.7.
	
What is a container/virtual environment (VE)/virtual private server (VPS)?

		
In the context of containers, these terms all refer to the concept of
operating-system-level virtualization. Operating-system-level virtualization is
a method of virtualization, in which the kernel of an operating system
allows for multiple isolated instances, that all share the kernel. When
referring to LXC, we call such instances containers. Because containers use the
host’s kernel rather than emulating a full operating system, they require less
overhead, but are limited to Linux guests.

	20.8.
	
What is a QEMU/KVM guest (or VM)?

		
A QEMU/KVM guest (or VM) is a guest system running virtualized under
Proxmox VE using QEMU and the Linux KVM kernel module.

	20.9.
	
What is QEMU?

		
QEMU is a generic and open source machine emulator and
virtualizer. QEMU uses the Linux KVM kernel module to achieve near
native performance by executing the guest code directly on the host
CPU.
It is not limited to Linux guests but allows arbitrary operating systems
to run.

	20.10.
	
How long will my Proxmox VE version be supported?

		
Proxmox VE versions are supported at least as long as the corresponding
Debian Version is
oldstable. Proxmox VE uses a
rolling release model and using the latest stable version is always
recommended.

	 Proxmox VE Version 	 Debian Version 	 First Release 	 Debian EOL 	 Proxmox EOL
	Proxmox VE 8
	Debian 12 (Bookworm)
	2023-06
	tba
	tba

	Proxmox VE 7
	Debian 11 (Bullseye)
	2021-07
	2024-07
	2024-07

	Proxmox VE 6
	Debian 10 (Buster)
	2019-07
	2022-09
	2022-09

	Proxmox VE 5
	Debian 9 (Stretch)
	2017-07
	2020-07
	2020-07

	Proxmox VE 4
	Debian 8 (Jessie)
	2015-10
	2018-06
	2018-06

	Proxmox VE 3
	Debian 7 (Wheezy)
	2013-05
	2016-04
	2017-02

	Proxmox VE 2
	Debian 6 (Squeeze)
	2012-04
	2014-05
	2014-05

	Proxmox VE 1
	Debian 5 (Lenny)
	2008-10
	2012-03
	2013-01

	20.11.
	
How can I upgrade Proxmox VE to the next point release?

		
Minor version upgrades, for example upgrading from Proxmox VE in version 7.1
to 7.2 or 7.3, can be done just like any normal update.
But you should still check the release notes
for any relevant noteable, or breaking change.

For the update itself use either the Web UI Node → Updates panel or
through the CLI with:
apt update
apt full-upgrade
Note
Always ensure you correctly setup the
package repositories and only
continue with the actual upgrade if apt update did not hit any error.

	20.12.
	
How can I upgrade Proxmox VE to the next major release?

		
Major version upgrades, for example going from Proxmox VE 4.4 to 5.0, are also
supported.
They must be carefully planned and tested and should never be started without
having a current backup ready.

Although the specific upgrade steps depend on your respective setup, we provide
general instructions and advice of how a upgrade should be performed:
	
Upgrade from Proxmox VE 7 to 8

	
Upgrade from Proxmox VE 6 to 7

	
Upgrade from Proxmox VE 5 to 6

	
Upgrade from Proxmox VE 4 to 5

	
Upgrade from Proxmox VE 3 to 4

	20.13.
	
LXC vs LXD vs Proxmox Containers vs Docker

		
LXC is a userspace interface for the Linux kernel containment
features. Through a powerful API and simple tools, it lets Linux users
easily create and manage system containers. LXC, as well as the former
OpenVZ, aims at system virtualization. Thus, it allows you to run a
complete OS inside a container, where you log in using ssh, add users,
run apache, etc…

LXD is built on top of LXC to provide a new, better user
experience. Under the hood, LXD uses LXC through liblxc and its Go
binding to create and manage the containers. It’s basically an
alternative to LXC’s tools and distribution template system with the
added features that come from being controllable over the network.
Proxmox Containers are how we refer to containers that are created and managed
using the Proxmox Container Toolkit (pct). They also target system
virtualization and use LXC as the basis of the container offering. The
Proxmox Container Toolkit (pct) is tightly coupled with Proxmox VE. This means
that it is aware of cluster setups, and it can use the same network
and storage resources as QEMU virtual machines (VMs). You can even use the
Proxmox VE firewall, create and restore backups, or manage containers using
the HA framework. Everything can be controlled over the network using
the Proxmox VE API.
Docker aims at running a single application in an isolated, self-contained
environment. These are generally referred to as “Application Containers”, rather
than “System Containers”. You manage a Docker instance from the host, using the
Docker Engine command-line interface. It is not recommended to run docker
directly on your Proxmox VE host.
Note
If you want to run application containers, for example, Docker images, it
is best to run them inside a Proxmox QEMU VM.

Bibliography

Books about Proxmox VE

[Ahmed16] Wasim Ahmed.
 Mastering Proxmox - Third Edition.
 Packt Publishing, 2017.
 ISBN 978-1788397605

[Ahmed15] Wasim Ahmed.
 Proxmox Cookbook.
 Packt Publishing, 2015.
 ISBN 978-1783980901

[Cheng14] Simon M.C. Cheng.
 Proxmox High Availability.
 Packt Publishing, 2014.
 ISBN 978-1783980888

[Goldman16] Rik Goldman.
 Learning Proxmox VE.
 Packt Publishing, 2016.
 ISBN 978-1783981786

[Surber16]] Lee R. Surber.
 Virtualization Complete: Business Basic Edition.
 Linux Solutions (LRS-TEK), 2016.
 ASIN B01BBVQZT6

Books about related technology

[Hertzog13] Raphaël Hertzog, Roland Mas., Freexian SARL
 The Debian Administrator's Handbook: Debian Bullseye from Discovery to Mastery,
 Freexian, 2021.
 ISBN 979-10-91414-20-3

[Bir96] Kenneth P. Birman.
 Building Secure and Reliable Network Applications.
 Manning Publications Co, 1996.
 ISBN 978-1884777295

[Walsh10] Norman Walsh.
 DocBook 5: The Definitive Guide.
 O’Reilly & Associates, 2010.
 ISBN 978-0596805029

[Richardson07] Leonard Richardson & Sam Ruby.
 RESTful Web Services.
 O’Reilly Media, 2007.
 ISBN 978-0596529260

[Singh15] Karan Singh.
 Learning Ceph.
 Packt Publishing, 2015.
 ISBN 978-1783985623

[Singh16] Karan Signh.
 Ceph Cookbook
 Packt Publishing, 2016.
 ISBN 978-1784393502

[Mauerer08] Wolfgang Mauerer.
 Professional Linux Kernel Architecture.
 John Wiley & Sons, 2008.
 ISBN 978-0470343432

[Loshin03] Pete Loshin,
 IPv6: Theory, Protocol, and Practice, 2nd Edition.
 Morgan Kaufmann, 2003.
 ISBN 978-1558608108

[Loeliger12] Jon Loeliger & Matthew McCullough.
 Version Control with Git: Powerful tools and techniques for
 collaborative software development.
 O’Reilly and Associates, 2012.
 ISBN 978-1449316389

[Kreibich10] Jay A. Kreibich.
 Using SQLite,
 O’Reilly and Associates, 2010.
 ISBN 978-0596521189

Books about related topics

[Bessen09] James Bessen & Michael J. Meurer,
 Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk.
 Princeton Univ Press, 2009.
 ISBN 978-0691143217

Appendix A. Command-line Interface

A.1. Output format options [FORMAT_OPTIONS]

It is possible to specify the output format using the
--output-format parameter. The default format text uses ASCII-art
to draw nice borders around tables. It additionally transforms some
values into human-readable text, for example:
	
Unix epoch is displayed as ISO 8601 date string.

	
Durations are displayed as week/day/hour/minute/second count, i.e 1d 5h.

	
Byte sizes value include units (B, KiB, MiB, GiB, TiB, PiB).

	
Fractions are display as percentage, i.e. 1.0 is displayed as 100%.

You can also completely suppress output using option --quiet.
	
--human-readable <boolean> (default = 1)

	
Call output rendering functions to produce human readable text.

	
--noborder <boolean> (default = 0)

	
Do not draw borders (for text format).

	
--noheader <boolean> (default = 0)

	
Do not show column headers (for text format).

	
--output-format <json | json-pretty | text | yaml> (default = text)

	
Output format.

	
--quiet <boolean>

	
Suppress printing results.

A.2. pvesm - Proxmox VE Storage Manager

pvesm <COMMAND> [ARGS] [OPTIONS]
pvesm add <type> <storage> [OPTIONS]
Create a new storage.
	
<type>: <btrfs | cephfs | cifs | dir | esxi | glusterfs | iscsi | iscsidirect | lvm | lvmthin | nfs | pbs | rbd | zfs | zfspool>

	
Storage type.

	
<storage>: <string>

	
The storage identifier.

	
--authsupported <string>

	
Authsupported.

	
--base <string>

	
Base volume. This volume is automatically activated.

	
--blocksize <string>

	
block size

	
--bwlimit [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]

	
Set I/O bandwidth limit for various operations (in KiB/s).

	
--comstar_hg <string>

	
host group for comstar views

	
--comstar_tg <string>

	
target group for comstar views

	
--content <string>

	
Allowed content types.

Note
the value rootdir is used for Containers, and value images for VMs.

	
--content-dirs <string>

	
Overrides for default content type directories.

	
--create-base-path <boolean> (default = yes)

	
Create the base directory if it doesn’t exist.

	
--create-subdirs <boolean> (default = yes)

	
Populate the directory with the default structure.

	
--data-pool <string>

	
Data Pool (for erasure coding only)

	
--datastore <string>

	
Proxmox Backup Server datastore name.

	
--disable <boolean>

	
Flag to disable the storage.

	
--domain <string>

	
CIFS domain.

	
--encryption-key a file containing an encryption key, or the special value "autogen"

	
Encryption key. Use autogen to generate one automatically without passphrase.

	
--export <string>

	
NFS export path.

	
--fingerprint ([A-Fa-f0-9]{2}:){31}[A-Fa-f0-9]{2}

	
Certificate SHA 256 fingerprint.

	
--format <string>

	
Default image format.

	
--fs-name <string>

	
The Ceph filesystem name.

	
--fuse <boolean>

	
Mount CephFS through FUSE.

	
--is_mountpoint <string> (default = no)

	
Assume the given path is an externally managed mountpoint and consider the storage offline if it is not mounted. Using a boolean (yes/no) value serves as a shortcut to using the target path in this field.

	
--iscsiprovider <string>

	
iscsi provider

	
--keyring file containing the keyring to authenticate in the Ceph cluster

	
Client keyring contents (for external clusters).

	
--krbd <boolean>

	
Always access rbd through krbd kernel module.

	
--lio_tpg <string>

	
target portal group for Linux LIO targets

	
--master-pubkey a file containing a PEM-formatted master public key

	
Base64-encoded, PEM-formatted public RSA key. Used to encrypt a copy of the encryption-key which will be added to each encrypted backup.

	
--max-protected-backups <integer> (-1 - N) (default = Unlimited for users with Datastore.Allocate privilege, 5 for other users)

	
Maximal number of protected backups per guest. Use -1 for unlimited.

	
--maxfiles <integer> (0 - N)

	
Deprecated: use prune-backups instead. Maximal number of backup files per VM. Use 0 for unlimited.

	
--mkdir <boolean> (default = yes)

	
Create the directory if it doesn’t exist and populate it with default sub-dirs. NOTE: Deprecated, use the create-base-path and create-subdirs options instead.

	
--monhost <string>

	
IP addresses of monitors (for external clusters).

	
--mountpoint <string>

	
mount point

	
--namespace <string>

	
Namespace.

	
--nocow <boolean> (default = 0)

	
Set the NOCOW flag on files. Disables data checksumming and causes data errors to be unrecoverable from while allowing direct I/O. Only use this if data does not need to be any more safe than on a single ext4 formatted disk with no underlying raid system.

	
--nodes <string>

	
List of nodes for which the storage configuration applies.

	
--nowritecache <boolean>

	
disable write caching on the target

	
--options <string>

	
NFS/CIFS mount options (see man nfs or man mount.cifs)

	
--password <password>

	
Password for accessing the share/datastore.

	
--path <string>

	
File system path.

	
--pool <string>

	
Pool.

	
--port <integer> (1 - 65535) (default = 8007)

	
For non default port.

	
--portal <string>

	
iSCSI portal (IP or DNS name with optional port).

	
--preallocation <falloc | full | metadata | off> (default = metadata)

	
Preallocation mode for raw and qcow2 images. Using metadata on raw images results in preallocation=off.

	
--prune-backups [keep-all=<1|0>] [,keep-daily=<N>] [,keep-hourly=<N>] [,keep-last=<N>] [,keep-monthly=<N>] [,keep-weekly=<N>] [,keep-yearly=<N>]

	
The retention options with shorter intervals are processed first with --keep-last being the very first one. Each option covers a specific period of time. We say that backups within this period are covered by this option. The next option does not take care of already covered backups and only considers older backups.

	
--saferemove <boolean>

	
Zero-out data when removing LVs.

	
--saferemove_throughput <string>

	
Wipe throughput (cstream -t parameter value).

	
--server <string>

	
Server IP or DNS name.

	
--server2 <string>

	
Backup volfile server IP or DNS name.

Note
Requires option(s): server

	
--share <string>

	
CIFS share.

	
--shared <boolean>

	
Indicate that this is a single storage with the same contents on all nodes (or all listed in the nodes option). It will not make the contents of a local storage automatically accessible to other nodes, it just marks an already shared storage as such!

	
--skip-cert-verification <boolean> (default = false)

	
Disable TLS certificate verification, only enable on fully trusted networks!

	
--smbversion <2.0 | 2.1 | 3 | 3.0 | 3.11 | default> (default = default)

	
SMB protocol version. default if not set, negotiates the highest SMB2+ version supported by both the client and server.

	
--sparse <boolean>

	
use sparse volumes

	
--subdir <string>

	
Subdir to mount.

	
--tagged_only <boolean>

	
Only use logical volumes tagged with pve-vm-ID.

	
--target <string>

	
iSCSI target.

	
--thinpool <string>

	
LVM thin pool LV name.

	
--transport <rdma | tcp | unix>

	
Gluster transport: tcp or rdma

	
--username <string>

	
RBD Id.

	
--vgname <string>

	
Volume group name.

	
--volume <string>

	
Glusterfs Volume.

pvesm alloc <storage> <vmid> <filename> <size> [OPTIONS]
Allocate disk images.
	
<storage>: <string>

	
The storage identifier.

	
<vmid>: <integer> (100 - 999999999)

	
Specify owner VM

	
<filename>: <string>

	
The name of the file to create.

	
<size>: \d+[MG]?

	
Size in kilobyte (1024 bytes). Optional suffixes M (megabyte, 1024K) and G (gigabyte, 1024M)

	
--format <qcow2 | raw | subvol>

	
no description available

Note
Requires option(s): size

pvesm apiinfo
Returns APIVER and APIAGE.
pvesm cifsscan
An alias for pvesm scan cifs.
pvesm export <volume> <format> <filename> [OPTIONS]
Used internally to export a volume.
	
<volume>: <string>

	
Volume identifier

	
<format>: <btrfs | qcow2+size | raw+size | tar+size | vmdk+size | zfs>

	
Export stream format

	
<filename>: <string>

	
Destination file name

	
--base (?^i:[a-z0-9_\-]{1,40})

	
Snapshot to start an incremental stream from

	
--snapshot (?^i:[a-z0-9_\-]{1,40})

	
Snapshot to export

	
--snapshot-list <string>

	
Ordered list of snapshots to transfer

	
--with-snapshots <boolean> (default = 0)

	
Whether to include intermediate snapshots in the stream

pvesm extractconfig <volume>
Extract configuration from vzdump backup archive.
	
<volume>: <string>

	
Volume identifier

pvesm free <volume> [OPTIONS]
Delete volume
	
<volume>: <string>

	
Volume identifier

	
--delay <integer> (1 - 30)

	
Time to wait for the task to finish. We return null if the task finish within that time.

	
--storage <string>

	
The storage identifier.

pvesm glusterfsscan
An alias for pvesm scan glusterfs.
pvesm help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvesm import <volume> <format> <filename> [OPTIONS]
Used internally to import a volume.
	
<volume>: <string>

	
Volume identifier

	
<format>: <btrfs | qcow2+size | raw+size | tar+size | vmdk+size | zfs>

	
Import stream format

	
<filename>: <string>

	
Source file name. For - stdin is used, the tcp://<IP-or-CIDR> format allows to use a TCP connection, the unix://PATH-TO-SOCKET format a UNIX socket as input.Else, the file is treated as common file.

	
--allow-rename <boolean> (default = 0)

	
Choose a new volume ID if the requested volume ID already exists, instead of throwing an error.

	
--base (?^i:[a-z0-9_\-]{1,40})

	
Base snapshot of an incremental stream

	
--delete-snapshot (?^i:[a-z0-9_\-]{1,80})

	
A snapshot to delete on success

	
--snapshot (?^i:[a-z0-9_\-]{1,40})

	
The current-state snapshot if the stream contains snapshots

	
--with-snapshots <boolean> (default = 0)

	
Whether the stream includes intermediate snapshots

pvesm iscsiscan
An alias for pvesm scan iscsi.
pvesm list <storage> [OPTIONS]
List storage content.
	
<storage>: <string>

	
The storage identifier.

	
--content <string>

	
Only list content of this type.

	
--vmid <integer> (100 - 999999999)

	
Only list images for this VM

pvesm lvmscan
An alias for pvesm scan lvm.
pvesm lvmthinscan
An alias for pvesm scan lvmthin.
pvesm nfsscan
An alias for pvesm scan nfs.
pvesm path <volume>
Get filesystem path for specified volume
	
<volume>: <string>

	
Volume identifier

pvesm prune-backups <storage> [OPTIONS]
Prune backups. Only those using the standard naming scheme are considered.
If no keep options are specified, those from the storage configuration are
used.
	
<storage>: <string>

	
The storage identifier.

	
--dry-run <boolean>

	
Only show what would be pruned, don’t delete anything.

	
--keep-all <boolean>

	
Keep all backups. Conflicts with the other options when true.

	
--keep-daily <N>

	
Keep backups for the last <N> different days. If there is morethan one backup for a single day, only the latest one is kept.

	
--keep-hourly <N>

	
Keep backups for the last <N> different hours. If there is morethan one backup for a single hour, only the latest one is kept.

	
--keep-last <N>

	
Keep the last <N> backups.

	
--keep-monthly <N>

	
Keep backups for the last <N> different months. If there is morethan one backup for a single month, only the latest one is kept.

	
--keep-weekly <N>

	
Keep backups for the last <N> different weeks. If there is morethan one backup for a single week, only the latest one is kept.

	
--keep-yearly <N>

	
Keep backups for the last <N> different years. If there is morethan one backup for a single year, only the latest one is kept.

	
--type <lxc | qemu>

	
Either qemu or lxc. Only consider backups for guests of this type.

	
--vmid <integer> (100 - 999999999)

	
Only consider backups for this guest.

pvesm remove <storage>
Delete storage configuration.
	
<storage>: <string>

	
The storage identifier.

pvesm scan cifs <server> [OPTIONS]
Scan remote CIFS server.
	
<server>: <string>

	
The server address (name or IP).

	
--domain <string>

	
SMB domain (Workgroup).

	
--password <password>

	
User password.

	
--username <string>

	
User name.

pvesm scan glusterfs <server>
Scan remote GlusterFS server.
	
<server>: <string>

	
The server address (name or IP).

pvesm scan iscsi <portal>
Scan remote iSCSI server.
	
<portal>: <string>

	
The iSCSI portal (IP or DNS name with optional port).

pvesm scan lvm
List local LVM volume groups.
pvesm scan lvmthin <vg>
List local LVM Thin Pools.
	
<vg>: [a-zA-Z0-9\.\+_][a-zA-Z0-9\.\+_\-]+

	
no description available

pvesm scan nfs <server>
Scan remote NFS server.
	
<server>: <string>

	
The server address (name or IP).

pvesm scan pbs <server> <username> --password <string> [OPTIONS] [FORMAT_OPTIONS]
Scan remote Proxmox Backup Server.
	
<server>: <string>

	
The server address (name or IP).

	
<username>: <string>

	
User-name or API token-ID.

	
--fingerprint ([A-Fa-f0-9]{2}:){31}[A-Fa-f0-9]{2}

	
Certificate SHA 256 fingerprint.

	
--password <string>

	
User password or API token secret.

	
--port <integer> (1 - 65535) (default = 8007)

	
Optional port.

pvesm scan zfs
Scan zfs pool list on local node.
pvesm set <storage> [OPTIONS]
Update storage configuration.
	
<storage>: <string>

	
The storage identifier.

	
--blocksize <string>

	
block size

	
--bwlimit [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]

	
Set I/O bandwidth limit for various operations (in KiB/s).

	
--comstar_hg <string>

	
host group for comstar views

	
--comstar_tg <string>

	
target group for comstar views

	
--content <string>

	
Allowed content types.

Note
the value rootdir is used for Containers, and value images for VMs.

	
--content-dirs <string>

	
Overrides for default content type directories.

	
--create-base-path <boolean> (default = yes)

	
Create the base directory if it doesn’t exist.

	
--create-subdirs <boolean> (default = yes)

	
Populate the directory with the default structure.

	
--data-pool <string>

	
Data Pool (for erasure coding only)

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--disable <boolean>

	
Flag to disable the storage.

	
--domain <string>

	
CIFS domain.

	
--encryption-key a file containing an encryption key, or the special value "autogen"

	
Encryption key. Use autogen to generate one automatically without passphrase.

	
--fingerprint ([A-Fa-f0-9]{2}:){31}[A-Fa-f0-9]{2}

	
Certificate SHA 256 fingerprint.

	
--format <string>

	
Default image format.

	
--fs-name <string>

	
The Ceph filesystem name.

	
--fuse <boolean>

	
Mount CephFS through FUSE.

	
--is_mountpoint <string> (default = no)

	
Assume the given path is an externally managed mountpoint and consider the storage offline if it is not mounted. Using a boolean (yes/no) value serves as a shortcut to using the target path in this field.

	
--keyring file containing the keyring to authenticate in the Ceph cluster

	
Client keyring contents (for external clusters).

	
--krbd <boolean>

	
Always access rbd through krbd kernel module.

	
--lio_tpg <string>

	
target portal group for Linux LIO targets

	
--master-pubkey a file containing a PEM-formatted master public key

	
Base64-encoded, PEM-formatted public RSA key. Used to encrypt a copy of the encryption-key which will be added to each encrypted backup.

	
--max-protected-backups <integer> (-1 - N) (default = Unlimited for users with Datastore.Allocate privilege, 5 for other users)

	
Maximal number of protected backups per guest. Use -1 for unlimited.

	
--maxfiles <integer> (0 - N)

	
Deprecated: use prune-backups instead. Maximal number of backup files per VM. Use 0 for unlimited.

	
--mkdir <boolean> (default = yes)

	
Create the directory if it doesn’t exist and populate it with default sub-dirs. NOTE: Deprecated, use the create-base-path and create-subdirs options instead.

	
--monhost <string>

	
IP addresses of monitors (for external clusters).

	
--mountpoint <string>

	
mount point

	
--namespace <string>

	
Namespace.

	
--nocow <boolean> (default = 0)

	
Set the NOCOW flag on files. Disables data checksumming and causes data errors to be unrecoverable from while allowing direct I/O. Only use this if data does not need to be any more safe than on a single ext4 formatted disk with no underlying raid system.

	
--nodes <string>

	
List of nodes for which the storage configuration applies.

	
--nowritecache <boolean>

	
disable write caching on the target

	
--options <string>

	
NFS/CIFS mount options (see man nfs or man mount.cifs)

	
--password <password>

	
Password for accessing the share/datastore.

	
--pool <string>

	
Pool.

	
--port <integer> (1 - 65535) (default = 8007)

	
For non default port.

	
--preallocation <falloc | full | metadata | off> (default = metadata)

	
Preallocation mode for raw and qcow2 images. Using metadata on raw images results in preallocation=off.

	
--prune-backups [keep-all=<1|0>] [,keep-daily=<N>] [,keep-hourly=<N>] [,keep-last=<N>] [,keep-monthly=<N>] [,keep-weekly=<N>] [,keep-yearly=<N>]

	
The retention options with shorter intervals are processed first with --keep-last being the very first one. Each option covers a specific period of time. We say that backups within this period are covered by this option. The next option does not take care of already covered backups and only considers older backups.

	
--saferemove <boolean>

	
Zero-out data when removing LVs.

	
--saferemove_throughput <string>

	
Wipe throughput (cstream -t parameter value).

	
--server <string>

	
Server IP or DNS name.

	
--server2 <string>

	
Backup volfile server IP or DNS name.

Note
Requires option(s): server

	
--shared <boolean>

	
Indicate that this is a single storage with the same contents on all nodes (or all listed in the nodes option). It will not make the contents of a local storage automatically accessible to other nodes, it just marks an already shared storage as such!

	
--skip-cert-verification <boolean> (default = false)

	
Disable TLS certificate verification, only enable on fully trusted networks!

	
--smbversion <2.0 | 2.1 | 3 | 3.0 | 3.11 | default> (default = default)

	
SMB protocol version. default if not set, negotiates the highest SMB2+ version supported by both the client and server.

	
--sparse <boolean>

	
use sparse volumes

	
--subdir <string>

	
Subdir to mount.

	
--tagged_only <boolean>

	
Only use logical volumes tagged with pve-vm-ID.

	
--transport <rdma | tcp | unix>

	
Gluster transport: tcp or rdma

	
--username <string>

	
RBD Id.

pvesm status [OPTIONS]
Get status for all datastores.
	
--content <string>

	
Only list stores which support this content type.

	
--enabled <boolean> (default = 0)

	
Only list stores which are enabled (not disabled in config).

	
--format <boolean> (default = 0)

	
Include information about formats

	
--storage <string>

	
Only list status for specified storage

	
--target <string>

	
If target is different to node, we only lists shared storages which content is accessible on this node and the specified target node.

pvesm zfsscan
An alias for pvesm scan zfs.

A.3. pvesubscription - Proxmox VE Subscription Manager

pvesubscription <COMMAND> [ARGS] [OPTIONS]
pvesubscription delete
Delete subscription key of this node.
pvesubscription get
Read subscription info.
pvesubscription help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvesubscription set <key>
Set subscription key.
	
<key>: \s*pve([1248])([cbsp])-[0-9a-f]{10}\s*

	
Proxmox VE subscription key

pvesubscription set-offline-key <data>
Internal use only! To set an offline key, use the package
proxmox-offline-mirror-helper instead.
	
<data>: <string>

	
A signed subscription info blob

pvesubscription update [OPTIONS]
Update subscription info.
	
--force <boolean> (default = 0)

	
Always connect to server, even if local cache is still valid.

A.4. pveperf - Proxmox VE Benchmark Script

pveperf [PATH]

A.5. pveceph - Manage CEPH Services on Proxmox VE Nodes

pveceph <COMMAND> [ARGS] [OPTIONS]
pveceph createmgr
An alias for pveceph mgr create.
pveceph createmon
An alias for pveceph mon create.
pveceph createosd
An alias for pveceph osd create.
pveceph createpool
An alias for pveceph pool create.
pveceph destroymgr
An alias for pveceph mgr destroy.
pveceph destroymon
An alias for pveceph mon destroy.
pveceph destroyosd
An alias for pveceph osd destroy.
pveceph destroypool
An alias for pveceph pool destroy.
pveceph fs create [OPTIONS]
Create a Ceph filesystem
	
--add-storage <boolean> (default = 0)

	
Configure the created CephFS as storage for this cluster.

	
--name <string> (default = cephfs)

	
The ceph filesystem name.

	
--pg_num <integer> (8 - 32768) (default = 128)

	
Number of placement groups for the backing data pool. The metadata pool will use a quarter of this.

pveceph fs destroy <name> [OPTIONS]
Destroy a Ceph filesystem
	
<name>: <string>

	
The ceph filesystem name.

	
--remove-pools <boolean> (default = 0)

	
Remove data and metadata pools configured for this fs.

	
--remove-storages <boolean> (default = 0)

	
Remove all pveceph-managed storages configured for this fs.

pveceph help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pveceph init [OPTIONS]
Create initial ceph default configuration and setup symlinks.
	
--cluster-network <string>

	
Declare a separate cluster network, OSDs will routeheartbeat, object replication and recovery traffic over it

Note
Requires option(s): network

	
--disable_cephx <boolean> (default = 0)

	
Disable cephx authentication.

Warning
cephx is a security feature protecting against man-in-the-middle attacks. Only consider disabling cephx if your network is private!

	
--min_size <integer> (1 - 7) (default = 2)

	
Minimum number of available replicas per object to allow I/O

	
--network <string>

	
Use specific network for all ceph related traffic

	
--pg_bits <integer> (6 - 14) (default = 6)

	
Placement group bits, used to specify the default number of placement groups.

Depreacted. This setting was deprecated in recent Ceph versions.

	
--size <integer> (1 - 7) (default = 3)

	
Targeted number of replicas per object

pveceph install [OPTIONS]
Install ceph related packages.
	
--allow-experimental <boolean> (default = 0)

	
Allow experimental versions. Use with care!

	
--repository <enterprise | no-subscription | test> (default = enterprise)

	
Ceph repository to use.

	
--version <quincy | reef> (default = quincy)

	
Ceph version to install.

pveceph lspools
An alias for pveceph pool ls.
pveceph mds create [OPTIONS]
Create Ceph Metadata Server (MDS)
	
--hotstandby <boolean> (default = 0)

	
Determines whether a ceph-mds daemon should poll and replay the log of an active MDS. Faster switch on MDS failure, but needs more idle resources.

	
--name [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])? (default = nodename)

	
The ID for the mds, when omitted the same as the nodename

pveceph mds destroy <name>
Destroy Ceph Metadata Server
	
<name>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?

	
The name (ID) of the mds

pveceph mgr create [OPTIONS]
Create Ceph Manager
	
--id [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?

	
The ID for the manager, when omitted the same as the nodename

pveceph mgr destroy <id>
Destroy Ceph Manager.
	
<id>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?

	
The ID of the manager

pveceph mon create [OPTIONS]
Create Ceph Monitor and Manager
	
--mon-address <string>

	
Overwrites autodetected monitor IP address(es). Must be in the public network(s) of Ceph.

	
--monid [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?

	
The ID for the monitor, when omitted the same as the nodename

pveceph mon destroy <monid>
Destroy Ceph Monitor and Manager.
	
<monid>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?

	
Monitor ID

pveceph osd create <dev> [OPTIONS]
Create OSD
	
<dev>: <string>

	
Block device name.

	
--crush-device-class <string>

	
Set the device class of the OSD in crush.

	
--db_dev <string>

	
Block device name for block.db.

	
--db_dev_size <number> (1 - N) (default = bluestore_block_db_size or 10% of OSD size)

	
Size in GiB for block.db.

Note
Requires option(s): db_dev

	
--encrypted <boolean> (default = 0)

	
Enables encryption of the OSD.

	
--osds-per-device <integer> (1 - N)

	
OSD services per physical device. Only useful for fast NVMe devices"
 ." to utilize their performance better.

	
--wal_dev <string>

	
Block device name for block.wal.

	
--wal_dev_size <number> (0.5 - N) (default = bluestore_block_wal_size or 1% of OSD size)

	
Size in GiB for block.wal.

Note
Requires option(s): wal_dev

pveceph osd destroy <osdid> [OPTIONS]
Destroy OSD
	
<osdid>: <integer>

	
OSD ID

	
--cleanup <boolean> (default = 0)

	
If set, we remove partition table entries.

pveceph osd details <osdid> [OPTIONS] [FORMAT_OPTIONS]
Get OSD details.
	
<osdid>: <string>

	
ID of the OSD

	
--verbose <boolean> (default = 0)

	
Print verbose information, same as json-pretty output format.

pveceph pool create <name> [OPTIONS]
Create Ceph pool
	
<name>: <string>

	
The name of the pool. It must be unique.

	
--add_storages <boolean> (default = 0; for erasure coded pools: 1)

	
Configure VM and CT storage using the new pool.

	
--application <cephfs | rbd | rgw> (default = rbd)

	
The application of the pool.

	
--crush_rule <string>

	
The rule to use for mapping object placement in the cluster.

	
--erasure-coding k=<integer> ,m=<integer> [,device-class=<class>] [,failure-domain=<domain>] [,profile=<profile>]

	
Create an erasure coded pool for RBD with an accompaning replicated pool for metadata storage. With EC, the common ceph options size, min_size and crush_rule parameters will be applied to the metadata pool.

	
--min_size <integer> (1 - 7) (default = 2)

	
Minimum number of replicas per object

	
--pg_autoscale_mode <off | on | warn> (default = warn)

	
The automatic PG scaling mode of the pool.

	
--pg_num <integer> (1 - 32768) (default = 128)

	
Number of placement groups.

	
--pg_num_min <integer> (-N - 32768)

	
Minimal number of placement groups.

	
--size <integer> (1 - 7) (default = 3)

	
Number of replicas per object

	
--target_size ^(\d+(\.\d+)?)([KMGT])?$

	
The estimated target size of the pool for the PG autoscaler.

	
--target_size_ratio <number>

	
The estimated target ratio of the pool for the PG autoscaler.

pveceph pool destroy <name> [OPTIONS]
Destroy pool
	
<name>: <string>

	
The name of the pool. It must be unique.

	
--force <boolean> (default = 0)

	
If true, destroys pool even if in use

	
--remove_ecprofile <boolean> (default = 1)

	
Remove the erasure code profile. Defaults to true, if applicable.

	
--remove_storages <boolean> (default = 0)

	
Remove all pveceph-managed storages configured for this pool

pveceph pool get <name> [OPTIONS] [FORMAT_OPTIONS]
Show the current pool status.
	
<name>: <string>

	
The name of the pool. It must be unique.

	
--verbose <boolean> (default = 0)

	
If enabled, will display additional data(eg. statistics).

pveceph pool ls [FORMAT_OPTIONS]
List all pools and their settings (which are settable by the POST/PUT
endpoints).
pveceph pool set <name> [OPTIONS]
Change POOL settings
	
<name>: <string>

	
The name of the pool. It must be unique.

	
--application <cephfs | rbd | rgw>

	
The application of the pool.

	
--crush_rule <string>

	
The rule to use for mapping object placement in the cluster.

	
--min_size <integer> (1 - 7)

	
Minimum number of replicas per object

	
--pg_autoscale_mode <off | on | warn>

	
The automatic PG scaling mode of the pool.

	
--pg_num <integer> (1 - 32768)

	
Number of placement groups.

	
--pg_num_min <integer> (-N - 32768)

	
Minimal number of placement groups.

	
--size <integer> (1 - 7)

	
Number of replicas per object

	
--target_size ^(\d+(\.\d+)?)([KMGT])?$

	
The estimated target size of the pool for the PG autoscaler.

	
--target_size_ratio <number>

	
The estimated target ratio of the pool for the PG autoscaler.

pveceph purge [OPTIONS]
Destroy ceph related data and configuration files.
	
--crash <boolean>

	
Additionally purge Ceph crash logs, /var/lib/ceph/crash.

	
--logs <boolean>

	
Additionally purge Ceph logs, /var/log/ceph.

pveceph start [OPTIONS]
Start ceph services.
	
--service (ceph|mon|mds|osd|mgr)(\.[a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?)? (default = ceph.target)

	
Ceph service name.

pveceph status
Get Ceph Status.
pveceph stop [OPTIONS]
Stop ceph services.
	
--service (ceph|mon|mds|osd|mgr)(\.[a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?)? (default = ceph.target)

	
Ceph service name.

A.6. pvenode - Proxmox VE Node Management

pvenode <COMMAND> [ARGS] [OPTIONS]
pvenode acme account deactivate [<name>]
Deactivate existing ACME account at CA.
	
<name>: <name> (default = default)

	
ACME account config file name.

pvenode acme account info [<name>] [FORMAT_OPTIONS]
Return existing ACME account information.
	
<name>: <name> (default = default)

	
ACME account config file name.

pvenode acme account list
ACMEAccount index.
pvenode acme account register [<name>] {<contact>} [OPTIONS]
Register a new ACME account with a compatible CA.
	
<name>: <name> (default = default)

	
ACME account config file name.

	
<contact>: <string>

	
Contact email addresses.

	
--directory ^https?://.*

	
URL of ACME CA directory endpoint.

pvenode acme account update [<name>] [OPTIONS]
Update existing ACME account information with CA. Note: not specifying any
new account information triggers a refresh.
	
<name>: <name> (default = default)

	
ACME account config file name.

	
--contact <string>

	
Contact email addresses.

pvenode acme cert order [OPTIONS]
Order a new certificate from ACME-compatible CA.
	
--force <boolean> (default = 0)

	
Overwrite existing custom certificate.

pvenode acme cert renew [OPTIONS]
Renew existing certificate from CA.
	
--force <boolean> (default = 0)

	
Force renewal even if expiry is more than 30 days away.

pvenode acme cert revoke
Revoke existing certificate from CA.
pvenode acme plugin add <type> <id> [OPTIONS]
Add ACME plugin configuration.
	
<type>: <dns | standalone>

	
ACME challenge type.

	
<id>: <string>

	
ACME Plugin ID name

	
--api <1984hosting | acmedns | acmeproxy | active24 | ad | ali | anx | artfiles | arvan | aurora | autodns | aws | azion | azure | bookmyname | bunny | cf | clouddns | cloudns | cn | conoha | constellix | cpanel | curanet | cyon | da | ddnss | desec | df | dgon | dnsexit | dnshome | dnsimple | dnsservices | do | doapi | domeneshop | dp | dpi | dreamhost | duckdns | durabledns | dyn | dynu | dynv6 | easydns | edgedns | euserv | exoscale | fornex | freedns | gandi_livedns | gcloud | gcore | gd | geoscaling | googledomains | he | hetzner | hexonet | hostingde | huaweicloud | infoblox | infomaniak | internetbs | inwx | ionos | ipv64 | ispconfig | jd | joker | kappernet | kas | kinghost | knot | la | leaseweb | lexicon | linode | linode_v4 | loopia | lua | maradns | me | miab | misaka | myapi | mydevil | mydnsjp | mythic_beasts | namecheap | namecom | namesilo | nanelo | nederhost | neodigit | netcup | netlify | nic | njalla | nm | nsd | nsone | nsupdate | nw | oci | one | online | openprovider | openstack | opnsense | ovh | pdns | pleskxml | pointhq | porkbun | rackcorp | rackspace | rage4 | rcode0 | regru | scaleway | schlundtech | selectel | selfhost | servercow | simply | tele3 | tencent | transip | udr | ultra | unoeuro | variomedia | veesp | vercel | vscale | vultr | websupport | world4you | yandex | yc | zilore | zone | zonomi>

	
API plugin name

	
--data File with one key-value pair per line, will be base64url encode for storage in plugin config.

	
DNS plugin data. (base64 encoded)

	
--disable <boolean>

	
Flag to disable the config.

	
--nodes <string>

	
List of cluster node names.

	
--validation-delay <integer> (0 - 172800) (default = 30)

	
Extra delay in seconds to wait before requesting validation. Allows to cope with a long TTL of DNS records.

pvenode acme plugin config <id> [FORMAT_OPTIONS]
Get ACME plugin configuration.
	
<id>: <string>

	
Unique identifier for ACME plugin instance.

pvenode acme plugin list [OPTIONS] [FORMAT_OPTIONS]
ACME plugin index.
	
--type <dns | standalone>

	
Only list ACME plugins of a specific type

pvenode acme plugin remove <id>
Delete ACME plugin configuration.
	
<id>: <string>

	
Unique identifier for ACME plugin instance.

pvenode acme plugin set <id> [OPTIONS]
Update ACME plugin configuration.
	
<id>: <string>

	
ACME Plugin ID name

	
--api <1984hosting | acmedns | acmeproxy | active24 | ad | ali | anx | artfiles | arvan | aurora | autodns | aws | azion | azure | bookmyname | bunny | cf | clouddns | cloudns | cn | conoha | constellix | cpanel | curanet | cyon | da | ddnss | desec | df | dgon | dnsexit | dnshome | dnsimple | dnsservices | do | doapi | domeneshop | dp | dpi | dreamhost | duckdns | durabledns | dyn | dynu | dynv6 | easydns | edgedns | euserv | exoscale | fornex | freedns | gandi_livedns | gcloud | gcore | gd | geoscaling | googledomains | he | hetzner | hexonet | hostingde | huaweicloud | infoblox | infomaniak | internetbs | inwx | ionos | ipv64 | ispconfig | jd | joker | kappernet | kas | kinghost | knot | la | leaseweb | lexicon | linode | linode_v4 | loopia | lua | maradns | me | miab | misaka | myapi | mydevil | mydnsjp | mythic_beasts | namecheap | namecom | namesilo | nanelo | nederhost | neodigit | netcup | netlify | nic | njalla | nm | nsd | nsone | nsupdate | nw | oci | one | online | openprovider | openstack | opnsense | ovh | pdns | pleskxml | pointhq | porkbun | rackcorp | rackspace | rage4 | rcode0 | regru | scaleway | schlundtech | selectel | selfhost | servercow | simply | tele3 | tencent | transip | udr | ultra | unoeuro | variomedia | veesp | vercel | vscale | vultr | websupport | world4you | yandex | yc | zilore | zone | zonomi>

	
API plugin name

	
--data File with one key-value pair per line, will be base64url encode for storage in plugin config.

	
DNS plugin data. (base64 encoded)

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--disable <boolean>

	
Flag to disable the config.

	
--nodes <string>

	
List of cluster node names.

	
--validation-delay <integer> (0 - 172800) (default = 30)

	
Extra delay in seconds to wait before requesting validation. Allows to cope with a long TTL of DNS records.

pvenode cert delete [<restart>]
DELETE custom certificate chain and key.
	
<restart>: <boolean> (default = 0)

	
Restart pveproxy.

pvenode cert info [FORMAT_OPTIONS]
Get information about node’s certificates.
pvenode cert set <certificates> [<key>] [OPTIONS] [FORMAT_OPTIONS]
Upload or update custom certificate chain and key.
	
<certificates>: <string>

	
PEM encoded certificate (chain).

	
<key>: <string>

	
PEM encoded private key.

	
--force <boolean> (default = 0)

	
Overwrite existing custom or ACME certificate files.

	
--restart <boolean> (default = 0)

	
Restart pveproxy.

pvenode config get [OPTIONS]
Get node configuration options.
	
--property <acme | acmedomain0 | acmedomain1 | acmedomain2 | acmedomain3 | acmedomain4 | acmedomain5 | description | startall-onboot-delay | wakeonlan> (default = all)

	
Return only a specific property from the node configuration.

pvenode config set [OPTIONS]
Set node configuration options.
	
--acme [account=<name>] [,domains=<domain[;domain;...]>]

	
Node specific ACME settings.

	
--acmedomain[n] [domain=]<domain> [,alias=<domain>] [,plugin=<name of the plugin configuration>]

	
ACME domain and validation plugin

	
--delete <string>

	
A list of settings you want to delete.

	
--description <string>

	
Description for the Node. Shown in the web-interface node notes panel. This is saved as comment inside the configuration file.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.

	
--startall-onboot-delay <integer> (0 - 300) (default = 0)

	
Initial delay in seconds, before starting all the Virtual Guests with on-boot enabled.

	
--wakeonlan <string>

	
MAC address for wake on LAN

pvenode help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvenode migrateall <target> [OPTIONS]
Migrate all VMs and Containers.
	
<target>: <string>

	
Target node.

	
--maxworkers <integer> (1 - N)

	
Maximal number of parallel migration job. If not set, uses’max_workers' from datacenter.cfg. One of both must be set!

	
--vms <string>

	
Only consider Guests with these IDs.

	
--with-local-disks <boolean>

	
Enable live storage migration for local disk

pvenode startall [OPTIONS]
Start all VMs and containers located on this node (by default only those
with onboot=1).
	
--force <boolean> (default = off)

	
Issue start command even if virtual guest have onboot not set or set to off.

	
--vms <string>

	
Only consider guests from this comma separated list of VMIDs.

pvenode stopall [OPTIONS]
Stop all VMs and Containers.
	
--force-stop <boolean> (default = 1)

	
Force a hard-stop after the timeout.

	
--timeout <integer> (0 - 7200) (default = 180)

	
Timeout for each guest shutdown task. Depending on force-stop, the shutdown gets then simply aborted or a hard-stop is forced.

	
--vms <string>

	
Only consider Guests with these IDs.

pvenode task list [OPTIONS] [FORMAT_OPTIONS]
Read task list for one node (finished tasks).
	
--errors <boolean> (default = 0)

	
Only list tasks with a status of ERROR.

	
--limit <integer> (0 - N) (default = 50)

	
Only list this amount of tasks.

	
--since <integer>

	
Only list tasks since this UNIX epoch.

	
--source <active | all | archive> (default = archive)

	
List archived, active or all tasks.

	
--start <integer> (0 - N) (default = 0)

	
List tasks beginning from this offset.

	
--statusfilter <string>

	
List of Task States that should be returned.

	
--typefilter <string>

	
Only list tasks of this type (e.g., vzstart, vzdump).

	
--until <integer>

	
Only list tasks until this UNIX epoch.

	
--userfilter <string>

	
Only list tasks from this user.

	
--vmid <integer> (100 - 999999999)

	
Only list tasks for this VM.

pvenode task log <upid> [OPTIONS]
Read task log.
	
<upid>: <string>

	
The task’s unique ID.

	
--download <boolean>

	
Whether the tasklog file should be downloaded. This parameter can’t be used in conjunction with other parameters

	
--start <integer> (0 - N) (default = 0)

	
Start at this line when reading the tasklog

pvenode task status <upid> [FORMAT_OPTIONS]
Read task status.
	
<upid>: <string>

	
The task’s unique ID.

pvenode wakeonlan <node>
Try to wake a node via wake on LAN network packet.
	
<node>: <string>

	
target node for wake on LAN packet

A.7. pvesh - Shell interface for the Proxmox VE API

pvesh <COMMAND> [ARGS] [OPTIONS]
pvesh create <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API POST on <api_path>.
	
<api_path>: <string>

	
API path.

	
--noproxy <boolean>

	
Disable automatic proxying.

pvesh delete <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API DELETE on <api_path>.
	
<api_path>: <string>

	
API path.

	
--noproxy <boolean>

	
Disable automatic proxying.

pvesh get <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API GET on <api_path>.
	
<api_path>: <string>

	
API path.

	
--noproxy <boolean>

	
Disable automatic proxying.

pvesh help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvesh ls <api_path> [OPTIONS] [FORMAT_OPTIONS]
List child objects on <api_path>.
	
<api_path>: <string>

	
API path.

	
--noproxy <boolean>

	
Disable automatic proxying.

pvesh set <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API PUT on <api_path>.
	
<api_path>: <string>

	
API path.

	
--noproxy <boolean>

	
Disable automatic proxying.

pvesh usage <api_path> [OPTIONS]
print API usage information for <api_path>.
	
<api_path>: <string>

	
API path.

	
--command <create | delete | get | set>

	
API command.

	
--returns <boolean>

	
Including schema for returned data.

	
--verbose <boolean>

	
Verbose output format.

A.8. qm - QEMU/KVM Virtual Machine Manager

qm <COMMAND> [ARGS] [OPTIONS]
qm agent
An alias for qm guest cmd.
qm cleanup <vmid> <clean-shutdown> <guest-requested>
Cleans up resources like tap devices, vgpus, etc. Called after a vm shuts
down, crashes, etc.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<clean-shutdown>: <boolean>

	
Indicates if qemu shutdown cleanly.

	
<guest-requested>: <boolean>

	
Indicates if the shutdown was requested by the guest or via qmp.

qm clone <vmid> <newid> [OPTIONS]
Create a copy of virtual machine/template.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<newid>: <integer> (100 - 999999999)

	
VMID for the clone.

	
--bwlimit <integer> (0 - N) (default = clone limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--description <string>

	
Description for the new VM.

	
--format <qcow2 | raw | vmdk>

	
Target format for file storage. Only valid for full clone.

	
--full <boolean>

	
Create a full copy of all disks. This is always done when you clone a normal VM. For VM templates, we try to create a linked clone by default.

	
--name <string>

	
Set a name for the new VM.

	
--pool <string>

	
Add the new VM to the specified pool.

	
--snapname <string>

	
The name of the snapshot.

	
--storage <string>

	
Target storage for full clone.

	
--target <string>

	
Target node. Only allowed if the original VM is on shared storage.

qm cloudinit dump <vmid> <type>
Get automatically generated cloudinit config.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<type>: <meta | network | user>

	
Config type.

qm cloudinit pending <vmid>
Get the cloudinit configuration with both current and pending values.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm cloudinit update <vmid>
Regenerate and change cloudinit config drive.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm config <vmid> [OPTIONS]
Get the virtual machine configuration with pending configuration changes
applied. Set the current parameter to get the current configuration
instead.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--current <boolean> (default = 0)

	
Get current values (instead of pending values).

	
--snapshot <string>

	
Fetch config values from given snapshot.

qm create <vmid> [OPTIONS]
Create or restore a virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--acpi <boolean> (default = 1)

	
Enable/disable ACPI.

	
--affinity <string>

	
List of host cores used to execute guest processes, for example: 0,5,8-11

	
--agent [enabled=]<1|0> [,freeze-fs-on-backup=<1|0>] [,fstrim_cloned_disks=<1|0>] [,type=<virtio|isa>]

	
Enable/disable communication with the QEMU Guest Agent and its properties.

	
--arch <aarch64 | x86_64>

	
Virtual processor architecture. Defaults to the host.

	
--archive <string>

	
The backup archive. Either the file system path to a .tar or .vma file (use - to pipe data from stdin) or a proxmox storage backup volume identifier.

	
--args <string>

	
Arbitrary arguments passed to kvm.

	
--audio0 device=<ich9-intel-hda|intel-hda|AC97> [,driver=<spice|none>]

	
Configure a audio device, useful in combination with QXL/Spice.

	
--autostart <boolean> (default = 0)

	
Automatic restart after crash (currently ignored).

	
--balloon <integer> (0 - N)

	
Amount of target RAM for the VM in MiB. Using zero disables the ballon driver.

	
--bios <ovmf | seabios> (default = seabios)

	
Select BIOS implementation.

	
--boot [[legacy=]<[acdn]{1,4}>] [,order=<device[;device...]>]

	
Specify guest boot order. Use the order= sub-property as usage with no key or legacy= is deprecated.

	
--bootdisk (ide|sata|scsi|virtio)\d+

	
Enable booting from specified disk. Deprecated: Use boot: order=foo;bar instead.

	
--bwlimit <integer> (0 - N) (default = restore limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--cdrom <volume>

	
This is an alias for option -ide2

	
--cicustom [meta=<volume>] [,network=<volume>] [,user=<volume>] [,vendor=<volume>]

	
cloud-init: Specify custom files to replace the automatically generated ones at start.

	
--cipassword <password>

	
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.

	
--citype <configdrive2 | nocloud | opennebula>

	
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.

	
--ciupgrade <boolean> (default = 1)

	
cloud-init: do an automatic package upgrade after the first boot.

	
--ciuser <string>

	
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.

	
--cores <integer> (1 - N) (default = 1)

	
The number of cores per socket.

	
--cpu [[cputype=]<string>] [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>] [,phys-bits=<8-64|host>] [,reported-model=<enum>]

	
Emulated CPU type.

	
--cpulimit <number> (0 - 128) (default = 0)

	
Limit of CPU usage.

	
--cpuunits <integer> (1 - 262144) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a VM, will be clamped to [1, 10000] in cgroup v2.

	
--description <string>

	
Description for the VM. Shown in the web-interface VM’s summary. This is saved as comment inside the configuration file.

	
--efidisk0 [file=]<volume> [,efitype=<2m|4m>] [,format=<enum>] [,import-from=<source volume>] [,pre-enrolled-keys=<1|0>] [,size=<DiskSize>]

	
Configure a disk for storing EFI vars. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Note that SIZE_IN_GiB is ignored here and that the default EFI vars are copied to the volume instead. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--force <boolean>

	
Allow to overwrite existing VM.

Note
Requires option(s): archive

	
--freeze <boolean>

	
Freeze CPU at startup (use c monitor command to start execution).

	
--hookscript <string>

	
Script that will be executed during various steps in the vms lifetime.

	
--hostpci[n] [[host=]<HOSTPCIID[;HOSTPCIID2...]>] [,device-id=<hex id>] [,legacy-igd=<1|0>] [,mapping=<mapping-id>] [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,sub-device-id=<hex id>] [,sub-vendor-id=<hex id>] [,vendor-id=<hex id>] [,x-vga=<1|0>]

	
Map host PCI devices into guest.

	
--hotplug <string> (default = network,disk,usb)

	
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory, usb and cloudinit. Use 0 to disable hotplug completely. Using 1 as value is an alias for the default network,disk,usb. USB hotplugging is possible for guests with machine version >= 7.1 and ostype l26 or windows > 7.

	
--hugepages <1024 | 2 | any>

	
Enable/disable hugepages memory.

	
--ide[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as IDE hard disk or CD-ROM (n is 0 to 3). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--ipconfig[n] [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]

	
cloud-init: Specify IP addresses and gateways for the corresponding interface.

IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit
gateway should be provided.
For IPv6 the special string auto can be used to use stateless autoconfiguration. This requires
cloud-init 19.4 or newer.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using
dhcp on IPv4.

	
--ivshmem size=<integer> [,name=<string>]

	
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.

	
--keephugepages <boolean> (default = 0)

	
Use together with hugepages. If enabled, hugepages will not not be deleted after VM shutdown and can be used for subsequent starts.

	
--keyboard <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>

	
Keyboard layout for VNC server. This option is generally not required and is often better handled from within the guest OS.

	
--kvm <boolean> (default = 1)

	
Enable/disable KVM hardware virtualization.

	
--live-restore <boolean>

	
Start the VM immediately while importing or restoring in the background.

	
--localtime <boolean>

	
Set the real time clock (RTC) to local time. This is enabled by default if the ostype indicates a Microsoft Windows OS.

	
--lock <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>

	
Lock/unlock the VM.

	
--machine (pc|pc(-i440fx)?-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|q35|pc-q35-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|virt(?:-\d+(\.\d+)+)?(\+pve\d+)?)

	
Specifies the QEMU machine type.

	
--memory [current=]<integer>

	
Memory properties.

	
--migrate_downtime <number> (0 - N) (default = 0.1)

	
Set maximum tolerated downtime (in seconds) for migrations.

	
--migrate_speed <integer> (0 - N) (default = 0)

	
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.

	
--name <string>

	
Set a name for the VM. Only used on the configuration web interface.

	
--nameserver <string>

	
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--net[n] [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,mtu=<integer>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]

	
Specify network devices.

	
--numa <boolean> (default = 0)

	
Enable/disable NUMA.

	
--numa[n] cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]

	
NUMA topology.

	
--onboot <boolean> (default = 0)

	
Specifies whether a VM will be started during system bootup.

	
--ostype <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win11 | win7 | win8 | wvista | wxp>

	
Specify guest operating system.

	
--parallel[n] /dev/parport\d+|/dev/usb/lp\d+

	
Map host parallel devices (n is 0 to 2).

	
--pool <string>

	
Add the VM to the specified pool.

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.

	
--reboot <boolean> (default = 1)

	
Allow reboot. If set to 0 the VM exit on reboot.

	
--rng0 [source=]</dev/urandom|/dev/random|/dev/hwrng> [,max_bytes=<integer>] [,period=<integer>]

	
Configure a VirtIO-based Random Number Generator.

	
--sata[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SATA hard disk or CD-ROM (n is 0 to 5). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--scsi[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,product=<product>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,vendor=<vendor>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SCSI hard disk or CD-ROM (n is 0 to 30). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--scsihw <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)

	
SCSI controller model

	
--searchdomain <string>

	
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--serial[n] (/dev/.+|socket)

	
Create a serial device inside the VM (n is 0 to 3)

	
--shares <integer> (0 - 50000) (default = 1000)

	
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.

	
--smbios1 [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]

	
Specify SMBIOS type 1 fields.

	
--smp <integer> (1 - N) (default = 1)

	
The number of CPUs. Please use option -sockets instead.

	
--sockets <integer> (1 - N) (default = 1)

	
The number of CPU sockets.

	
--spice_enhancements [foldersharing=<1|0>] [,videostreaming=<off|all|filter>]

	
Configure additional enhancements for SPICE.

	
--sshkeys <filepath>

	
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).

	
--start <boolean> (default = 0)

	
Start VM after it was created successfully.

	
--startdate (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)

	
Set the initial date of the real time clock. Valid format for date are:'now' or 2006-06-17T16:01:21 or 2006-06-17.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--storage <string>

	
Default storage.

	
--tablet <boolean> (default = 1)

	
Enable/disable the USB tablet device.

	
--tags <string>

	
Tags of the VM. This is only meta information.

	
--tdf <boolean> (default = 0)

	
Enable/disable time drift fix.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--tpmstate0 [file=]<volume> [,import-from=<source volume>] [,size=<DiskSize>] [,version=<v1.2|v2.0>]

	
Configure a Disk for storing TPM state. The format is fixed to raw. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Note that SIZE_IN_GiB is ignored here and 4 MiB will be used instead. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--unique <boolean>

	
Assign a unique random ethernet address.

Note
Requires option(s): archive

	
--unused[n] [file=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

	
--usb[n] [[host=]<HOSTUSBDEVICE|spice>] [,mapping=<mapping-id>] [,usb3=<1|0>]

	
Configure an USB device (n is 0 to 4, for machine version >= 7.1 and ostype l26 or windows > 7, n can be up to 14).

	
--vcpus <integer> (1 - N) (default = 0)

	
Number of hotplugged vcpus.

	
--vga [[type=]<enum>] [,clipboard=<vnc>] [,memory=<integer>]

	
Configure the VGA hardware.

	
--virtio[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]

	
Use volume as VIRTIO hard disk (n is 0 to 15). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--vmgenid <UUID> (default = 1 (autogenerated))

	
Set VM Generation ID. Use 1 to autogenerate on create or update, pass 0 to disable explicitly.

	
--vmstatestorage <string>

	
Default storage for VM state volumes/files.

	
--watchdog [[model=]<i6300esb|ib700>] [,action=<enum>]

	
Create a virtual hardware watchdog device.

qm delsnapshot <vmid> <snapname> [OPTIONS]
Delete a VM snapshot.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--force <boolean>

	
For removal from config file, even if removing disk snapshots fails.

qm destroy <vmid> [OPTIONS]
Destroy the VM and all used/owned volumes. Removes any VM specific
permissions and firewall rules
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--destroy-unreferenced-disks <boolean> (default = 0)

	
If set, destroy additionally all disks not referenced in the config but with a matching VMID from all enabled storages.

	
--purge <boolean>

	
Remove VMID from configurations, like backup & replication jobs and HA.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

qm disk import <vmid> <source> <storage> [OPTIONS]
Import an external disk image as an unused disk in a VM. The
 image format has to be supported by qemu-img(1).
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<source>: <string>

	
Path to the disk image to import

	
<storage>: <string>

	
Target storage ID

	
--format <qcow2 | raw | vmdk>

	
Target format

qm disk move <vmid> <disk> [<storage>] [OPTIONS]
Move volume to different storage or to a different VM.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<disk>: <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi14 | scsi15 | scsi16 | scsi17 | scsi18 | scsi19 | scsi2 | scsi20 | scsi21 | scsi22 | scsi23 | scsi24 | scsi25 | scsi26 | scsi27 | scsi28 | scsi29 | scsi3 | scsi30 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | tpmstate0 | unused0 | unused1 | unused10 | unused100 | unused101 | unused102 | unused103 | unused104 | unused105 | unused106 | unused107 | unused108 | unused109 | unused11 | unused110 | unused111 | unused112 | unused113 | unused114 | unused115 | unused116 | unused117 | unused118 | unused119 | unused12 | unused120 | unused121 | unused122 | unused123 | unused124 | unused125 | unused126 | unused127 | unused128 | unused129 | unused13 | unused130 | unused131 | unused132 | unused133 | unused134 | unused135 | unused136 | unused137 | unused138 | unused139 | unused14 | unused140 | unused141 | unused142 | unused143 | unused144 | unused145 | unused146 | unused147 | unused148 | unused149 | unused15 | unused150 | unused151 | unused152 | unused153 | unused154 | unused155 | unused156 | unused157 | unused158 | unused159 | unused16 | unused160 | unused161 | unused162 | unused163 | unused164 | unused165 | unused166 | unused167 | unused168 | unused169 | unused17 | unused170 | unused171 | unused172 | unused173 | unused174 | unused175 | unused176 | unused177 | unused178 | unused179 | unused18 | unused180 | unused181 | unused182 | unused183 | unused184 | unused185 | unused186 | unused187 | unused188 | unused189 | unused19 | unused190 | unused191 | unused192 | unused193 | unused194 | unused195 | unused196 | unused197 | unused198 | unused199 | unused2 | unused20 | unused200 | unused201 | unused202 | unused203 | unused204 | unused205 | unused206 | unused207 | unused208 | unused209 | unused21 | unused210 | unused211 | unused212 | unused213 | unused214 | unused215 | unused216 | unused217 | unused218 | unused219 | unused22 | unused220 | unused221 | unused222 | unused223 | unused224 | unused225 | unused226 | unused227 | unused228 | unused229 | unused23 | unused230 | unused231 | unused232 | unused233 | unused234 | unused235 | unused236 | unused237 | unused238 | unused239 | unused24 | unused240 | unused241 | unused242 | unused243 | unused244 | unused245 | unused246 | unused247 | unused248 | unused249 | unused25 | unused250 | unused251 | unused252 | unused253 | unused254 | unused255 | unused26 | unused27 | unused28 | unused29 | unused3 | unused30 | unused31 | unused32 | unused33 | unused34 | unused35 | unused36 | unused37 | unused38 | unused39 | unused4 | unused40 | unused41 | unused42 | unused43 | unused44 | unused45 | unused46 | unused47 | unused48 | unused49 | unused5 | unused50 | unused51 | unused52 | unused53 | unused54 | unused55 | unused56 | unused57 | unused58 | unused59 | unused6 | unused60 | unused61 | unused62 | unused63 | unused64 | unused65 | unused66 | unused67 | unused68 | unused69 | unused7 | unused70 | unused71 | unused72 | unused73 | unused74 | unused75 | unused76 | unused77 | unused78 | unused79 | unused8 | unused80 | unused81 | unused82 | unused83 | unused84 | unused85 | unused86 | unused87 | unused88 | unused89 | unused9 | unused90 | unused91 | unused92 | unused93 | unused94 | unused95 | unused96 | unused97 | unused98 | unused99 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>

	
The disk you want to move.

	
<storage>: <string>

	
Target storage.

	
--bwlimit <integer> (0 - N) (default = move limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--delete <boolean> (default = 0)

	
Delete the original disk after successful copy. By default the original disk is kept as unused disk.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1"
 ." digest. This can be used to prevent concurrent modifications.

	
--format <qcow2 | raw | vmdk>

	
Target Format.

	
--target-digest <string>

	
Prevent changes if the current config file of the target VM has a"
 ." different SHA1 digest. This can be used to detect concurrent modifications.

	
--target-disk <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi14 | scsi15 | scsi16 | scsi17 | scsi18 | scsi19 | scsi2 | scsi20 | scsi21 | scsi22 | scsi23 | scsi24 | scsi25 | scsi26 | scsi27 | scsi28 | scsi29 | scsi3 | scsi30 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | tpmstate0 | unused0 | unused1 | unused10 | unused100 | unused101 | unused102 | unused103 | unused104 | unused105 | unused106 | unused107 | unused108 | unused109 | unused11 | unused110 | unused111 | unused112 | unused113 | unused114 | unused115 | unused116 | unused117 | unused118 | unused119 | unused12 | unused120 | unused121 | unused122 | unused123 | unused124 | unused125 | unused126 | unused127 | unused128 | unused129 | unused13 | unused130 | unused131 | unused132 | unused133 | unused134 | unused135 | unused136 | unused137 | unused138 | unused139 | unused14 | unused140 | unused141 | unused142 | unused143 | unused144 | unused145 | unused146 | unused147 | unused148 | unused149 | unused15 | unused150 | unused151 | unused152 | unused153 | unused154 | unused155 | unused156 | unused157 | unused158 | unused159 | unused16 | unused160 | unused161 | unused162 | unused163 | unused164 | unused165 | unused166 | unused167 | unused168 | unused169 | unused17 | unused170 | unused171 | unused172 | unused173 | unused174 | unused175 | unused176 | unused177 | unused178 | unused179 | unused18 | unused180 | unused181 | unused182 | unused183 | unused184 | unused185 | unused186 | unused187 | unused188 | unused189 | unused19 | unused190 | unused191 | unused192 | unused193 | unused194 | unused195 | unused196 | unused197 | unused198 | unused199 | unused2 | unused20 | unused200 | unused201 | unused202 | unused203 | unused204 | unused205 | unused206 | unused207 | unused208 | unused209 | unused21 | unused210 | unused211 | unused212 | unused213 | unused214 | unused215 | unused216 | unused217 | unused218 | unused219 | unused22 | unused220 | unused221 | unused222 | unused223 | unused224 | unused225 | unused226 | unused227 | unused228 | unused229 | unused23 | unused230 | unused231 | unused232 | unused233 | unused234 | unused235 | unused236 | unused237 | unused238 | unused239 | unused24 | unused240 | unused241 | unused242 | unused243 | unused244 | unused245 | unused246 | unused247 | unused248 | unused249 | unused25 | unused250 | unused251 | unused252 | unused253 | unused254 | unused255 | unused26 | unused27 | unused28 | unused29 | unused3 | unused30 | unused31 | unused32 | unused33 | unused34 | unused35 | unused36 | unused37 | unused38 | unused39 | unused4 | unused40 | unused41 | unused42 | unused43 | unused44 | unused45 | unused46 | unused47 | unused48 | unused49 | unused5 | unused50 | unused51 | unused52 | unused53 | unused54 | unused55 | unused56 | unused57 | unused58 | unused59 | unused6 | unused60 | unused61 | unused62 | unused63 | unused64 | unused65 | unused66 | unused67 | unused68 | unused69 | unused7 | unused70 | unused71 | unused72 | unused73 | unused74 | unused75 | unused76 | unused77 | unused78 | unused79 | unused8 | unused80 | unused81 | unused82 | unused83 | unused84 | unused85 | unused86 | unused87 | unused88 | unused89 | unused9 | unused90 | unused91 | unused92 | unused93 | unused94 | unused95 | unused96 | unused97 | unused98 | unused99 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>

	
The config key the disk will be moved to on the target VM (for example, ide0 or scsi1). Default is the source disk key.

	
--target-vmid <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm disk rescan [OPTIONS]
Rescan all storages and update disk sizes and unused disk images.
	
--dryrun <boolean> (default = 0)

	
Do not actually write changes out to VM config(s).

	
--vmid <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm disk resize <vmid> <disk> <size> [OPTIONS]
Extend volume size.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<disk>: <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi14 | scsi15 | scsi16 | scsi17 | scsi18 | scsi19 | scsi2 | scsi20 | scsi21 | scsi22 | scsi23 | scsi24 | scsi25 | scsi26 | scsi27 | scsi28 | scsi29 | scsi3 | scsi30 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | tpmstate0 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>

	
The disk you want to resize.

	
<size>: \+?\d+(\.\d+)?[KMGT]?

	
The new size. With the + sign the value is added to the actual size of the volume and without it, the value is taken as an absolute one. Shrinking disk size is not supported.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

qm disk unlink <vmid> --idlist <string> [OPTIONS]
Unlink/delete disk images.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--force <boolean>

	
Force physical removal. Without this, we simple remove the disk from the config file and create an additional configuration entry called unused[n], which contains the volume ID. Unlink of unused[n] always cause physical removal.

	
--idlist <string>

	
A list of disk IDs you want to delete.

qm guest cmd <vmid> <command>
Execute QEMU Guest Agent commands.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<command>: <fsfreeze-freeze | fsfreeze-status | fsfreeze-thaw | fstrim | get-fsinfo | get-host-name | get-memory-block-info | get-memory-blocks | get-osinfo | get-time | get-timezone | get-users | get-vcpus | info | network-get-interfaces | ping | shutdown | suspend-disk | suspend-hybrid | suspend-ram>

	
The QGA command.

qm guest exec <vmid> [<extra-args>] [OPTIONS]
Executes the given command via the guest agent
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<extra-args>: <array>

	
Extra arguments as array

	
--pass-stdin <boolean> (default = 0)

	
When set, read STDIN until EOF and forward to guest agent via input-data (usually treated as STDIN to process launched by guest agent). Allows maximal 1 MiB.

	
--synchronous <boolean> (default = 1)

	
If set to off, returns the pid immediately instead of waiting for the commmand to finish or the timeout.

	
--timeout <integer> (0 - N) (default = 30)

	
The maximum time to wait synchronously for the command to finish. If reached, the pid gets returned. Set to 0 to deactivate

qm guest exec-status <vmid> <pid>
Gets the status of the given pid started by the guest-agent
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<pid>: <integer>

	
The PID to query

qm guest passwd <vmid> <username> [OPTIONS]
Sets the password for the given user to the given password
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<username>: <string>

	
The user to set the password for.

	
--crypted <boolean> (default = 0)

	
set to 1 if the password has already been passed through crypt()

qm help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

qm import <vmid> <source> --storage <string> [OPTIONS]
Import a foreign virtual guest from a supported import source, such as an
ESXi storage.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<source>: <string>

	
The import source volume id.

	
--acpi <boolean> (default = 1)

	
Enable/disable ACPI.

	
--affinity <string>

	
List of host cores used to execute guest processes, for example: 0,5,8-11

	
--agent [enabled=]<1|0> [,freeze-fs-on-backup=<1|0>] [,fstrim_cloned_disks=<1|0>] [,type=<virtio|isa>]

	
Enable/disable communication with the QEMU Guest Agent and its properties.

	
--arch <aarch64 | x86_64>

	
Virtual processor architecture. Defaults to the host.

	
--args <string>

	
Arbitrary arguments passed to kvm.

	
--audio0 device=<ich9-intel-hda|intel-hda|AC97> [,driver=<spice|none>]

	
Configure a audio device, useful in combination with QXL/Spice.

	
--autostart <boolean> (default = 0)

	
Automatic restart after crash (currently ignored).

	
--balloon <integer> (0 - N)

	
Amount of target RAM for the VM in MiB. Using zero disables the ballon driver.

	
--bios <ovmf | seabios> (default = seabios)

	
Select BIOS implementation.

	
--boot [[legacy=]<[acdn]{1,4}>] [,order=<device[;device...]>]

	
Specify guest boot order. Use the order= sub-property as usage with no key or legacy= is deprecated.

	
--bootdisk (ide|sata|scsi|virtio)\d+

	
Enable booting from specified disk. Deprecated: Use boot: order=foo;bar instead.

	
--cdrom <volume>

	
This is an alias for option -ide2

	
--cicustom [meta=<volume>] [,network=<volume>] [,user=<volume>] [,vendor=<volume>]

	
cloud-init: Specify custom files to replace the automatically generated ones at start.

	
--cipassword <string>

	
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.

	
--citype <configdrive2 | nocloud | opennebula>

	
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.

	
--ciupgrade <boolean> (default = 1)

	
cloud-init: do an automatic package upgrade after the first boot.

	
--ciuser <string>

	
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.

	
--cores <integer> (1 - N) (default = 1)

	
The number of cores per socket.

	
--cpu [[cputype=]<string>] [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>] [,phys-bits=<8-64|host>] [,reported-model=<enum>]

	
Emulated CPU type.

	
--cpulimit <number> (0 - 128) (default = 0)

	
Limit of CPU usage.

	
--cpuunits <integer> (1 - 262144) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a VM, will be clamped to [1, 10000] in cgroup v2.

	
--delete <string>

	
A list of settings you want to delete.

	
--description <string>

	
Description for the VM. Shown in the web-interface VM’s summary. This is saved as comment inside the configuration file.

	
--dryrun <boolean> (default = 0)

	
Show the create command and exit without doing anything.

	
--efidisk0 [file=]<volume> [,efitype=<2m|4m>] [,format=<enum>] [,pre-enrolled-keys=<1|0>] [,size=<DiskSize>]

	
Configure a disk for storing EFI vars.

	
--format <qcow2 | raw | vmdk>

	
Target format

	
--freeze <boolean>

	
Freeze CPU at startup (use c monitor command to start execution).

	
--hookscript <string>

	
Script that will be executed during various steps in the vms lifetime.

	
--hostpci[n] [[host=]<HOSTPCIID[;HOSTPCIID2...]>] [,device-id=<hex id>] [,legacy-igd=<1|0>] [,mapping=<mapping-id>] [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,sub-device-id=<hex id>] [,sub-vendor-id=<hex id>] [,vendor-id=<hex id>] [,x-vga=<1|0>]

	
Map host PCI devices into guest.

	
--hotplug <string> (default = network,disk,usb)

	
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory, usb and cloudinit. Use 0 to disable hotplug completely. Using 1 as value is an alias for the default network,disk,usb. USB hotplugging is possible for guests with machine version >= 7.1 and ostype l26 or windows > 7.

	
--hugepages <1024 | 2 | any>

	
Enable/disable hugepages memory.

	
--ide[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as IDE hard disk or CD-ROM (n is 0 to 3).

	
--ipconfig[n] [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]

	
cloud-init: Specify IP addresses and gateways for the corresponding interface.

IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit
gateway should be provided.
For IPv6 the special string auto can be used to use stateless autoconfiguration. This requires
cloud-init 19.4 or newer.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using
dhcp on IPv4.

	
--ivshmem size=<integer> [,name=<string>]

	
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.

	
--keephugepages <boolean> (default = 0)

	
Use together with hugepages. If enabled, hugepages will not not be deleted after VM shutdown and can be used for subsequent starts.

	
--keyboard <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>

	
Keyboard layout for VNC server. This option is generally not required and is often better handled from within the guest OS.

	
--kvm <boolean> (default = 1)

	
Enable/disable KVM hardware virtualization.

	
--live-import <boolean> (default = 0)

	
Immediately start the VM and copy the data in the background.

	
--localtime <boolean>

	
Set the real time clock (RTC) to local time. This is enabled by default if the ostype indicates a Microsoft Windows OS.

	
--lock <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>

	
Lock/unlock the VM.

	
--machine (pc|pc(-i440fx)?-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|q35|pc-q35-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|virt(?:-\d+(\.\d+)+)?(\+pve\d+)?)

	
Specifies the QEMU machine type.

	
--memory [current=]<integer>

	
Memory properties.

	
--migrate_downtime <number> (0 - N) (default = 0.1)

	
Set maximum tolerated downtime (in seconds) for migrations.

	
--migrate_speed <integer> (0 - N) (default = 0)

	
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.

	
--name <string>

	
Set a name for the VM. Only used on the configuration web interface.

	
--nameserver <string>

	
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--net[n] [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,mtu=<integer>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]

	
Specify network devices.

	
--numa <boolean> (default = 0)

	
Enable/disable NUMA.

	
--numa[n] cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]

	
NUMA topology.

	
--onboot <boolean> (default = 0)

	
Specifies whether a VM will be started during system bootup.

	
--ostype <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win11 | win7 | win8 | wvista | wxp>

	
Specify guest operating system.

	
--parallel[n] /dev/parport\d+|/dev/usb/lp\d+

	
Map host parallel devices (n is 0 to 2).

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.

	
--reboot <boolean> (default = 1)

	
Allow reboot. If set to 0 the VM exit on reboot.

	
--rng0 [source=]</dev/urandom|/dev/random|/dev/hwrng> [,max_bytes=<integer>] [,period=<integer>]

	
Configure a VirtIO-based Random Number Generator.

	
--sata[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SATA hard disk or CD-ROM (n is 0 to 5).

	
--scsi[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,product=<product>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,vendor=<vendor>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SCSI hard disk or CD-ROM (n is 0 to 30).

	
--scsihw <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)

	
SCSI controller model

	
--searchdomain <string>

	
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--serial[n] (/dev/.+|socket)

	
Create a serial device inside the VM (n is 0 to 3)

	
--shares <integer> (0 - 50000) (default = 1000)

	
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.

	
--smbios1 [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]

	
Specify SMBIOS type 1 fields.

	
--smp <integer> (1 - N) (default = 1)

	
The number of CPUs. Please use option -sockets instead.

	
--sockets <integer> (1 - N) (default = 1)

	
The number of CPU sockets.

	
--spice_enhancements [foldersharing=<1|0>] [,videostreaming=<off|all|filter>]

	
Configure additional enhancements for SPICE.

	
--sshkeys <string>

	
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).

	
--startdate (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)

	
Set the initial date of the real time clock. Valid format for date are:'now' or 2006-06-17T16:01:21 or 2006-06-17.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--storage <string>

	
Default storage.

	
--tablet <boolean> (default = 1)

	
Enable/disable the USB tablet device.

	
--tags <string>

	
Tags of the VM. This is only meta information.

	
--tdf <boolean> (default = 0)

	
Enable/disable time drift fix.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--tpmstate0 [file=]<volume> [,size=<DiskSize>] [,version=<v1.2|v2.0>]

	
Configure a Disk for storing TPM state. The format is fixed to raw.

	
--unused[n] [file=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

	
--usb[n] [[host=]<HOSTUSBDEVICE|spice>] [,mapping=<mapping-id>] [,usb3=<1|0>]

	
Configure an USB device (n is 0 to 4, for machine version >= 7.1 and ostype l26 or windows > 7, n can be up to 14).

	
--vcpus <integer> (1 - N) (default = 0)

	
Number of hotplugged vcpus.

	
--vga [[type=]<enum>] [,clipboard=<vnc>] [,memory=<integer>]

	
Configure the VGA hardware.

	
--virtio[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]

	
Use volume as VIRTIO hard disk (n is 0 to 15).

	
--vmgenid <UUID> (default = 1 (autogenerated))

	
Set VM Generation ID. Use 1 to autogenerate on create or update, pass 0 to disable explicitly.

	
--vmstatestorage <string>

	
Default storage for VM state volumes/files.

	
--watchdog [[model=]<i6300esb|ib700>] [,action=<enum>]

	
Create a virtual hardware watchdog device.

qm importdisk
An alias for qm disk import.
qm importovf <vmid> <manifest> <storage> [OPTIONS]
Create a new VM using parameters read from an OVF manifest
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<manifest>: <string>

	
path to the ovf file

	
<storage>: <string>

	
Target storage ID

	
--dryrun <boolean>

	
Print a parsed representation of the extracted OVF parameters, but do not create a VM

	
--format <qcow2 | raw | vmdk>

	
Target format

qm list [OPTIONS]
Virtual machine index (per node).
	
--full <boolean>

	
Determine the full status of active VMs.

qm listsnapshot <vmid>
List all snapshots.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm migrate <vmid> <target> [OPTIONS]
Migrate virtual machine. Creates a new migration task.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target>: <string>

	
Target node.

	
--bwlimit <integer> (0 - N) (default = migrate limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--force <boolean>

	
Allow to migrate VMs which use local devices. Only root may use this option.

	
--migration_network <string>

	
CIDR of the (sub) network that is used for migration.

	
--migration_type <insecure | secure>

	
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.

	
--online <boolean>

	
Use online/live migration if VM is running. Ignored if VM is stopped.

	
--targetstorage <string>

	
Mapping from source to target storages. Providing only a single storage ID maps all source storages to that storage. Providing the special value 1 will map each source storage to itself.

	
--with-local-disks <boolean>

	
Enable live storage migration for local disk

qm monitor <vmid>
Enter QEMU Monitor interface.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm move-disk
An alias for qm disk move.
qm move_disk
An alias for qm disk move.
qm mtunnel
Used by qmigrate - do not use manually.
qm nbdstop <vmid>
Stop embedded nbd server.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm pending <vmid>
Get the virtual machine configuration with both current and pending values.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm reboot <vmid> [OPTIONS]
Reboot the VM by shutting it down, and starting it again. Applies pending
changes.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--timeout <integer> (0 - N)

	
Wait maximal timeout seconds for the shutdown.

qm remote-migrate <vmid> [<target-vmid>] <target-endpoint> --target-bridge <string> --target-storage <string> [OPTIONS]
Migrate virtual machine to a remote cluster. Creates a new migration task.
EXPERIMENTAL feature!
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target-vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target-endpoint>: apitoken=<user@realm!token=SECRET> ,host=<ADDRESS> [,fingerprint=<FINGERPRINT>] [,port=<PORT>]

	
Remote target endpoint

	
--bwlimit <integer> (0 - N) (default = migrate limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--delete <boolean> (default = 0)

	
Delete the original VM and related data after successful migration. By default the original VM is kept on the source cluster in a stopped state.

	
--online <boolean>

	
Use online/live migration if VM is running. Ignored if VM is stopped.

	
--target-bridge <string>

	
Mapping from source to target bridges. Providing only a single bridge ID maps all source bridges to that bridge. Providing the special value 1 will map each source bridge to itself.

	
--target-storage <string>

	
Mapping from source to target storages. Providing only a single storage ID maps all source storages to that storage. Providing the special value 1 will map each source storage to itself.

qm rescan
An alias for qm disk rescan.
qm reset <vmid> [OPTIONS]
Reset virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

qm resize
An alias for qm disk resize.
qm resume <vmid> [OPTIONS]
Resume virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--nocheck <boolean>

	
no description available

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

qm rollback <vmid> <snapname> [OPTIONS]
Rollback VM state to specified snapshot.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--start <boolean> (default = 0)

	
Whether the VM should get started after rolling back successfully. (Note: VMs will be automatically started if the snapshot includes RAM.)

qm sendkey <vmid> <key> [OPTIONS]
Send key event to virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<key>: <string>

	
The key (qemu monitor encoding).

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

qm set <vmid> [OPTIONS]
Set virtual machine options (synchrounous API) - You should consider using
the POST method instead for any actions involving hotplug or storage
allocation.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--acpi <boolean> (default = 1)

	
Enable/disable ACPI.

	
--affinity <string>

	
List of host cores used to execute guest processes, for example: 0,5,8-11

	
--agent [enabled=]<1|0> [,freeze-fs-on-backup=<1|0>] [,fstrim_cloned_disks=<1|0>] [,type=<virtio|isa>]

	
Enable/disable communication with the QEMU Guest Agent and its properties.

	
--arch <aarch64 | x86_64>

	
Virtual processor architecture. Defaults to the host.

	
--args <string>

	
Arbitrary arguments passed to kvm.

	
--audio0 device=<ich9-intel-hda|intel-hda|AC97> [,driver=<spice|none>]

	
Configure a audio device, useful in combination with QXL/Spice.

	
--autostart <boolean> (default = 0)

	
Automatic restart after crash (currently ignored).

	
--balloon <integer> (0 - N)

	
Amount of target RAM for the VM in MiB. Using zero disables the ballon driver.

	
--bios <ovmf | seabios> (default = seabios)

	
Select BIOS implementation.

	
--boot [[legacy=]<[acdn]{1,4}>] [,order=<device[;device...]>]

	
Specify guest boot order. Use the order= sub-property as usage with no key or legacy= is deprecated.

	
--bootdisk (ide|sata|scsi|virtio)\d+

	
Enable booting from specified disk. Deprecated: Use boot: order=foo;bar instead.

	
--cdrom <volume>

	
This is an alias for option -ide2

	
--cicustom [meta=<volume>] [,network=<volume>] [,user=<volume>] [,vendor=<volume>]

	
cloud-init: Specify custom files to replace the automatically generated ones at start.

	
--cipassword <password>

	
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.

	
--citype <configdrive2 | nocloud | opennebula>

	
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.

	
--ciupgrade <boolean> (default = 1)

	
cloud-init: do an automatic package upgrade after the first boot.

	
--ciuser <string>

	
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.

	
--cores <integer> (1 - N) (default = 1)

	
The number of cores per socket.

	
--cpu [[cputype=]<string>] [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>] [,phys-bits=<8-64|host>] [,reported-model=<enum>]

	
Emulated CPU type.

	
--cpulimit <number> (0 - 128) (default = 0)

	
Limit of CPU usage.

	
--cpuunits <integer> (1 - 262144) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a VM, will be clamped to [1, 10000] in cgroup v2.

	
--delete <string>

	
A list of settings you want to delete.

	
--description <string>

	
Description for the VM. Shown in the web-interface VM’s summary. This is saved as comment inside the configuration file.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.

	
--efidisk0 [file=]<volume> [,efitype=<2m|4m>] [,format=<enum>] [,import-from=<source volume>] [,pre-enrolled-keys=<1|0>] [,size=<DiskSize>]

	
Configure a disk for storing EFI vars. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Note that SIZE_IN_GiB is ignored here and that the default EFI vars are copied to the volume instead. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--force <boolean>

	
Force physical removal. Without this, we simple remove the disk from the config file and create an additional configuration entry called unused[n], which contains the volume ID. Unlink of unused[n] always cause physical removal.

Note
Requires option(s): delete

	
--freeze <boolean>

	
Freeze CPU at startup (use c monitor command to start execution).

	
--hookscript <string>

	
Script that will be executed during various steps in the vms lifetime.

	
--hostpci[n] [[host=]<HOSTPCIID[;HOSTPCIID2...]>] [,device-id=<hex id>] [,legacy-igd=<1|0>] [,mapping=<mapping-id>] [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,sub-device-id=<hex id>] [,sub-vendor-id=<hex id>] [,vendor-id=<hex id>] [,x-vga=<1|0>]

	
Map host PCI devices into guest.

	
--hotplug <string> (default = network,disk,usb)

	
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory, usb and cloudinit. Use 0 to disable hotplug completely. Using 1 as value is an alias for the default network,disk,usb. USB hotplugging is possible for guests with machine version >= 7.1 and ostype l26 or windows > 7.

	
--hugepages <1024 | 2 | any>

	
Enable/disable hugepages memory.

	
--ide[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as IDE hard disk or CD-ROM (n is 0 to 3). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--ipconfig[n] [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]

	
cloud-init: Specify IP addresses and gateways for the corresponding interface.

IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit
gateway should be provided.
For IPv6 the special string auto can be used to use stateless autoconfiguration. This requires
cloud-init 19.4 or newer.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using
dhcp on IPv4.

	
--ivshmem size=<integer> [,name=<string>]

	
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.

	
--keephugepages <boolean> (default = 0)

	
Use together with hugepages. If enabled, hugepages will not not be deleted after VM shutdown and can be used for subsequent starts.

	
--keyboard <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>

	
Keyboard layout for VNC server. This option is generally not required and is often better handled from within the guest OS.

	
--kvm <boolean> (default = 1)

	
Enable/disable KVM hardware virtualization.

	
--localtime <boolean>

	
Set the real time clock (RTC) to local time. This is enabled by default if the ostype indicates a Microsoft Windows OS.

	
--lock <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>

	
Lock/unlock the VM.

	
--machine (pc|pc(-i440fx)?-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|q35|pc-q35-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|virt(?:-\d+(\.\d+)+)?(\+pve\d+)?)

	
Specifies the QEMU machine type.

	
--memory [current=]<integer>

	
Memory properties.

	
--migrate_downtime <number> (0 - N) (default = 0.1)

	
Set maximum tolerated downtime (in seconds) for migrations.

	
--migrate_speed <integer> (0 - N) (default = 0)

	
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.

	
--name <string>

	
Set a name for the VM. Only used on the configuration web interface.

	
--nameserver <string>

	
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--net[n] [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,mtu=<integer>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]

	
Specify network devices.

	
--numa <boolean> (default = 0)

	
Enable/disable NUMA.

	
--numa[n] cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]

	
NUMA topology.

	
--onboot <boolean> (default = 0)

	
Specifies whether a VM will be started during system bootup.

	
--ostype <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win11 | win7 | win8 | wvista | wxp>

	
Specify guest operating system.

	
--parallel[n] /dev/parport\d+|/dev/usb/lp\d+

	
Map host parallel devices (n is 0 to 2).

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.

	
--reboot <boolean> (default = 1)

	
Allow reboot. If set to 0 the VM exit on reboot.

	
--revert <string>

	
Revert a pending change.

	
--rng0 [source=]</dev/urandom|/dev/random|/dev/hwrng> [,max_bytes=<integer>] [,period=<integer>]

	
Configure a VirtIO-based Random Number Generator.

	
--sata[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SATA hard disk or CD-ROM (n is 0 to 5). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--scsi[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,product=<product>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,vendor=<vendor>] [,werror=<enum>] [,wwn=<wwn>]

	
Use volume as SCSI hard disk or CD-ROM (n is 0 to 30). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--scsihw <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)

	
SCSI controller model

	
--searchdomain <string>

	
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.

	
--serial[n] (/dev/.+|socket)

	
Create a serial device inside the VM (n is 0 to 3)

	
--shares <integer> (0 - 50000) (default = 1000)

	
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

	
--smbios1 [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]

	
Specify SMBIOS type 1 fields.

	
--smp <integer> (1 - N) (default = 1)

	
The number of CPUs. Please use option -sockets instead.

	
--sockets <integer> (1 - N) (default = 1)

	
The number of CPU sockets.

	
--spice_enhancements [foldersharing=<1|0>] [,videostreaming=<off|all|filter>]

	
Configure additional enhancements for SPICE.

	
--sshkeys <filepath>

	
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).

	
--startdate (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)

	
Set the initial date of the real time clock. Valid format for date are:'now' or 2006-06-17T16:01:21 or 2006-06-17.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--tablet <boolean> (default = 1)

	
Enable/disable the USB tablet device.

	
--tags <string>

	
Tags of the VM. This is only meta information.

	
--tdf <boolean> (default = 0)

	
Enable/disable time drift fix.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--tpmstate0 [file=]<volume> [,import-from=<source volume>] [,size=<DiskSize>] [,version=<v1.2|v2.0>]

	
Configure a Disk for storing TPM state. The format is fixed to raw. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Note that SIZE_IN_GiB is ignored here and 4 MiB will be used instead. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--unused[n] [file=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

	
--usb[n] [[host=]<HOSTUSBDEVICE|spice>] [,mapping=<mapping-id>] [,usb3=<1|0>]

	
Configure an USB device (n is 0 to 4, for machine version >= 7.1 and ostype l26 or windows > 7, n can be up to 14).

	
--vcpus <integer> (1 - N) (default = 0)

	
Number of hotplugged vcpus.

	
--vga [[type=]<enum>] [,clipboard=<vnc>] [,memory=<integer>]

	
Configure the VGA hardware.

	
--virtio[n] [file=]<volume> [,aio=<native|threads|io_uring>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,import-from=<source volume>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,ro=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]

	
Use volume as VIRTIO hard disk (n is 0 to 15). Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume. Use STORAGE_ID:0 and the import-from parameter to import from an existing volume.

	
--vmgenid <UUID> (default = 1 (autogenerated))

	
Set VM Generation ID. Use 1 to autogenerate on create or update, pass 0 to disable explicitly.

	
--vmstatestorage <string>

	
Default storage for VM state volumes/files.

	
--watchdog [[model=]<i6300esb|ib700>] [,action=<enum>]

	
Create a virtual hardware watchdog device.

qm showcmd <vmid> [OPTIONS]
Show command line which is used to start the VM (debug info).
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--pretty <boolean> (default = 0)

	
Puts each option on a new line to enhance human readability

	
--snapshot <string>

	
Fetch config values from given snapshot.

qm shutdown <vmid> [OPTIONS]
Shutdown virtual machine. This is similar to pressing the power button on a
physical machine.This will send an ACPI event for the guest OS, which
should then proceed to a clean shutdown.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--forceStop <boolean> (default = 0)

	
Make sure the VM stops.

	
--keepActive <boolean> (default = 0)

	
Do not deactivate storage volumes.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

	
--timeout <integer> (0 - N)

	
Wait maximal timeout seconds.

qm snapshot <vmid> <snapname> [OPTIONS]
Snapshot a VM.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--description <string>

	
A textual description or comment.

	
--vmstate <boolean>

	
Save the vmstate

qm start <vmid> [OPTIONS]
Start virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--force-cpu <string>

	
Override QEMU’s -cpu argument with the given string.

	
--machine (pc|pc(-i440fx)?-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|q35|pc-q35-\d+(\.\d+)+(\+pve\d+)?(\.pxe)?|virt(?:-\d+(\.\d+)+)?(\+pve\d+)?)

	
Specifies the QEMU machine type.

	
--migratedfrom <string>

	
The cluster node name.

	
--migration_network <string>

	
CIDR of the (sub) network that is used for migration.

	
--migration_type <insecure | secure>

	
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

	
--stateuri <string>

	
Some command save/restore state from this location.

	
--targetstorage <string>

	
Mapping from source to target storages. Providing only a single storage ID maps all source storages to that storage. Providing the special value 1 will map each source storage to itself.

	
--timeout <integer> (0 - N) (default = max(30, vm memory in GiB))

	
Wait maximal timeout seconds.

qm status <vmid> [OPTIONS]
Show VM status.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--verbose <boolean>

	
Verbose output format

qm stop <vmid> [OPTIONS]
Stop virtual machine. The qemu process will exit immediately. Thisis akin
to pulling the power plug of a running computer and may damage the VM data
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--keepActive <boolean> (default = 0)

	
Do not deactivate storage volumes.

	
--migratedfrom <string>

	
The cluster node name.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

	
--timeout <integer> (0 - N)

	
Wait maximal timeout seconds.

qm suspend <vmid> [OPTIONS]
Suspend virtual machine.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

	
--statestorage <string>

	
The storage for the VM state

Note
Requires option(s): todisk

	
--todisk <boolean> (default = 0)

	
If set, suspends the VM to disk. Will be resumed on next VM start.

qm template <vmid> [OPTIONS]
Create a Template.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--disk <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi14 | scsi15 | scsi16 | scsi17 | scsi18 | scsi19 | scsi2 | scsi20 | scsi21 | scsi22 | scsi23 | scsi24 | scsi25 | scsi26 | scsi27 | scsi28 | scsi29 | scsi3 | scsi30 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | tpmstate0 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>

	
If you want to convert only 1 disk to base image.

qm terminal <vmid> [OPTIONS]
Open a terminal using a serial device (The VM need to have a serial device
configured, for example serial0: socket)
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--escape <string> (default = ^O)

	
Escape character.

	
--iface <serial0 | serial1 | serial2 | serial3>

	
Select the serial device. By default we simply use the first suitable device.

qm unlink
An alias for qm disk unlink.
qm unlock <vmid>
Unlock the VM.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm vncproxy <vmid>
Proxy VM VNC traffic to stdin/stdout
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

qm wait <vmid> [OPTIONS]
Wait until the VM is stopped.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--timeout <integer> (1 - N)

	
Timeout in seconds. Default is to wait forever.

A.9. qmrestore - Restore QemuServer vzdump Backups

qmrestore help
qmrestore <archive> <vmid> [OPTIONS]
Restore QemuServer vzdump backups.
	
<archive>: <string>

	
The backup file. You can pass - to read from standard input.

	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--bwlimit <number> (0 - N)

	
Override I/O bandwidth limit (in KiB/s).

	
--force <boolean>

	
Allow to overwrite existing VM.

	
--live-restore <boolean>

	
Start the VM immediately from the backup and restore in background. PBS only.

	
--pool <string>

	
Add the VM to the specified pool.

	
--storage <string>

	
Default storage.

	
--unique <boolean>

	
Assign a unique random ethernet address.

A.10. pct - Proxmox Container Toolkit

pct <COMMAND> [ARGS] [OPTIONS]
pct clone <vmid> <newid> [OPTIONS]
Create a container clone/copy
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<newid>: <integer> (100 - 999999999)

	
VMID for the clone.

	
--bwlimit <number> (0 - N) (default = clone limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--description <string>

	
Description for the new CT.

	
--full <boolean>

	
Create a full copy of all disks. This is always done when you clone a normal CT. For CT templates, we try to create a linked clone by default.

	
--hostname <string>

	
Set a hostname for the new CT.

	
--pool <string>

	
Add the new CT to the specified pool.

	
--snapname <string>

	
The name of the snapshot.

	
--storage <string>

	
Target storage for full clone.

	
--target <string>

	
Target node. Only allowed if the original VM is on shared storage.

pct config <vmid> [OPTIONS]
Get container configuration.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--current <boolean> (default = 0)

	
Get current values (instead of pending values).

	
--snapshot <string>

	
Fetch config values from given snapshot.

pct console <vmid> [OPTIONS]
Launch a console for the specified container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--escape \^?[a-z] (default = ^a)

	
Escape sequence prefix. For example to use <Ctrl+b q> as the escape sequence pass ^b.

pct cpusets
Print the list of assigned CPU sets.
pct create <vmid> <ostemplate> [OPTIONS]
Create or restore a container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<ostemplate>: <string>

	
The OS template or backup file.

	
--arch <amd64 | arm64 | armhf | i386 | riscv32 | riscv64> (default = amd64)

	
OS architecture type.

	
--bwlimit <number> (0 - N) (default = restore limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--cmode <console | shell | tty> (default = tty)

	
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).

	
--console <boolean> (default = 1)

	
Attach a console device (/dev/console) to the container.

	
--cores <integer> (1 - 8192)

	
The number of cores assigned to the container. A container can use all available cores by default.

	
--cpulimit <number> (0 - 8192) (default = 0)

	
Limit of CPU usage.

Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.

	
--cpuunits <integer> (0 - 500000) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a container, will be clamped to [1, 10000] in cgroup v2.

	
--debug <boolean> (default = 0)

	
Try to be more verbose. For now this only enables debug log-level on start.

	
--description <string>

	
Description for the Container. Shown in the web-interface CT’s summary. This is saved as comment inside the configuration file.

	
--dev[n] [[path=]<Path>] [,gid=<integer>] [,mode=<Octal access mode>] [,uid=<integer>]

	
Device to pass through to the container

	
--features [force_rw_sys=<1|0>] [,fuse=<1|0>] [,keyctl=<1|0>] [,mknod=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]

	
Allow containers access to advanced features.

	
--force <boolean>

	
Allow to overwrite existing container.

	
--hookscript <string>

	
Script that will be exectued during various steps in the containers lifetime.

	
--hostname <string>

	
Set a host name for the container.

	
--ignore-unpack-errors <boolean>

	
Ignore errors when extracting the template.

	
--lock <backup | create | destroyed | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>

	
Lock/unlock the container.

	
--memory <integer> (16 - N) (default = 512)

	
Amount of RAM for the container in MB.

	
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container mount point. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume.

	
--nameserver <string>

	
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,link_down=<1|0>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]

	
Specifies network interfaces for the container.

	
--onboot <boolean> (default = 0)

	
Specifies whether a container will be started during system bootup.

	
--ostype <alpine | archlinux | centos | debian | devuan | fedora | gentoo | nixos | opensuse | ubuntu | unmanaged>

	
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.

	
--password <password>

	
Sets root password inside container.

	
--pool <string>

	
Add the VM to the specified pool.

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.

	
--restore <boolean>

	
Mark this as restore task.

	
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container root.

	
--searchdomain <string>

	
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--ssh-public-keys <filepath>

	
Setup public SSH keys (one key per line, OpenSSH format).

	
--start <boolean> (default = 0)

	
Start the CT after its creation finished successfully.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--storage <string> (default = local)

	
Default Storage.

	
--swap <integer> (0 - N) (default = 512)

	
Amount of SWAP for the container in MB.

	
--tags <string>

	
Tags of the Container. This is only meta information.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--timezone <string>

	
Time zone to use in the container. If option isn’t set, then nothing will be done. Can be set to host to match the host time zone, or an arbitrary time zone option from /usr/share/zoneinfo/zone.tab

	
--tty <integer> (0 - 6) (default = 2)

	
Specify the number of tty available to the container

	
--unique <boolean>

	
Assign a unique random ethernet address.

Note
Requires option(s): restore

	
--unprivileged <boolean> (default = 0)

	
Makes the container run as unprivileged user. (Should not be modified manually.)

	
--unused[n] [volume=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

pct delsnapshot <vmid> <snapname> [OPTIONS]
Delete a LXC snapshot.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--force <boolean>

	
For removal from config file, even if removing disk snapshots fails.

pct destroy <vmid> [OPTIONS]
Destroy the container (also delete all uses files).
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--destroy-unreferenced-disks <boolean>

	
If set, destroy additionally all disks with the VMID from all enabled storages which are not referenced in the config.

	
--force <boolean> (default = 0)

	
Force destroy, even if running.

	
--purge <boolean> (default = 0)

	
Remove container from all related configurations. For example, backup jobs, replication jobs or HA. Related ACLs and Firewall entries will always be removed.

pct df <vmid>
Get the container’s current disk usage.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct enter <vmid> [OPTIONS]
Launch a shell for the specified container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--keep-env <boolean> (default = 1)

	
Keep the current environment. This option will disabled by default with PVE 9. If you rely on a preserved environment, please use this option to be future-proof.

pct exec <vmid> [<extra-args>] [OPTIONS]
Launch a command inside the specified container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<extra-args>: <array>

	
Extra arguments as array

	
--keep-env <boolean> (default = 1)

	
Keep the current environment. This option will disabled by default with PVE 9. If you rely on a preserved environment, please use this option to be future-proof.

pct fsck <vmid> [OPTIONS]
Run a filesystem check (fsck) on a container volume.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--device <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs>

	
A volume on which to run the filesystem check

	
--force <boolean> (default = 0)

	
Force checking, even if the filesystem seems clean

pct fstrim <vmid> [OPTIONS]
Run fstrim on a chosen CT and its mountpoints, except bind or read-only
mountpoints.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--ignore-mountpoints <boolean>

	
Skip all mountpoints, only do fstrim on the container root.

pct help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pct list
LXC container index (per node).
pct listsnapshot <vmid>
List all snapshots.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct migrate <vmid> <target> [OPTIONS]
Migrate the container to another node. Creates a new migration task.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target>: <string>

	
Target node.

	
--bwlimit <number> (0 - N) (default = migrate limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--online <boolean>

	
Use online/live migration.

	
--restart <boolean>

	
Use restart migration

	
--target-storage <string>

	
Mapping from source to target storages. Providing only a single storage ID maps all source storages to that storage. Providing the special value 1 will map each source storage to itself.

	
--timeout <integer> (default = 180)

	
Timeout in seconds for shutdown for restart migration

pct mount <vmid>
Mount the container’s filesystem on the host. This will hold a lock on the
container and is meant for emergency maintenance only as it will prevent
further operations on the container other than start and stop.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct move-volume <vmid> <volume> [<storage>] [<target-vmid>] [<target-volume>] [OPTIONS]
Move a rootfs-/mp-volume to a different storage or to a different
container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<volume>: <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs | unused0 | unused1 | unused10 | unused100 | unused101 | unused102 | unused103 | unused104 | unused105 | unused106 | unused107 | unused108 | unused109 | unused11 | unused110 | unused111 | unused112 | unused113 | unused114 | unused115 | unused116 | unused117 | unused118 | unused119 | unused12 | unused120 | unused121 | unused122 | unused123 | unused124 | unused125 | unused126 | unused127 | unused128 | unused129 | unused13 | unused130 | unused131 | unused132 | unused133 | unused134 | unused135 | unused136 | unused137 | unused138 | unused139 | unused14 | unused140 | unused141 | unused142 | unused143 | unused144 | unused145 | unused146 | unused147 | unused148 | unused149 | unused15 | unused150 | unused151 | unused152 | unused153 | unused154 | unused155 | unused156 | unused157 | unused158 | unused159 | unused16 | unused160 | unused161 | unused162 | unused163 | unused164 | unused165 | unused166 | unused167 | unused168 | unused169 | unused17 | unused170 | unused171 | unused172 | unused173 | unused174 | unused175 | unused176 | unused177 | unused178 | unused179 | unused18 | unused180 | unused181 | unused182 | unused183 | unused184 | unused185 | unused186 | unused187 | unused188 | unused189 | unused19 | unused190 | unused191 | unused192 | unused193 | unused194 | unused195 | unused196 | unused197 | unused198 | unused199 | unused2 | unused20 | unused200 | unused201 | unused202 | unused203 | unused204 | unused205 | unused206 | unused207 | unused208 | unused209 | unused21 | unused210 | unused211 | unused212 | unused213 | unused214 | unused215 | unused216 | unused217 | unused218 | unused219 | unused22 | unused220 | unused221 | unused222 | unused223 | unused224 | unused225 | unused226 | unused227 | unused228 | unused229 | unused23 | unused230 | unused231 | unused232 | unused233 | unused234 | unused235 | unused236 | unused237 | unused238 | unused239 | unused24 | unused240 | unused241 | unused242 | unused243 | unused244 | unused245 | unused246 | unused247 | unused248 | unused249 | unused25 | unused250 | unused251 | unused252 | unused253 | unused254 | unused255 | unused26 | unused27 | unused28 | unused29 | unused3 | unused30 | unused31 | unused32 | unused33 | unused34 | unused35 | unused36 | unused37 | unused38 | unused39 | unused4 | unused40 | unused41 | unused42 | unused43 | unused44 | unused45 | unused46 | unused47 | unused48 | unused49 | unused5 | unused50 | unused51 | unused52 | unused53 | unused54 | unused55 | unused56 | unused57 | unused58 | unused59 | unused6 | unused60 | unused61 | unused62 | unused63 | unused64 | unused65 | unused66 | unused67 | unused68 | unused69 | unused7 | unused70 | unused71 | unused72 | unused73 | unused74 | unused75 | unused76 | unused77 | unused78 | unused79 | unused8 | unused80 | unused81 | unused82 | unused83 | unused84 | unused85 | unused86 | unused87 | unused88 | unused89 | unused9 | unused90 | unused91 | unused92 | unused93 | unused94 | unused95 | unused96 | unused97 | unused98 | unused99>

	
Volume which will be moved.

	
<storage>: <string>

	
Target Storage.

	
<target-vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target-volume>: <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs | unused0 | unused1 | unused10 | unused100 | unused101 | unused102 | unused103 | unused104 | unused105 | unused106 | unused107 | unused108 | unused109 | unused11 | unused110 | unused111 | unused112 | unused113 | unused114 | unused115 | unused116 | unused117 | unused118 | unused119 | unused12 | unused120 | unused121 | unused122 | unused123 | unused124 | unused125 | unused126 | unused127 | unused128 | unused129 | unused13 | unused130 | unused131 | unused132 | unused133 | unused134 | unused135 | unused136 | unused137 | unused138 | unused139 | unused14 | unused140 | unused141 | unused142 | unused143 | unused144 | unused145 | unused146 | unused147 | unused148 | unused149 | unused15 | unused150 | unused151 | unused152 | unused153 | unused154 | unused155 | unused156 | unused157 | unused158 | unused159 | unused16 | unused160 | unused161 | unused162 | unused163 | unused164 | unused165 | unused166 | unused167 | unused168 | unused169 | unused17 | unused170 | unused171 | unused172 | unused173 | unused174 | unused175 | unused176 | unused177 | unused178 | unused179 | unused18 | unused180 | unused181 | unused182 | unused183 | unused184 | unused185 | unused186 | unused187 | unused188 | unused189 | unused19 | unused190 | unused191 | unused192 | unused193 | unused194 | unused195 | unused196 | unused197 | unused198 | unused199 | unused2 | unused20 | unused200 | unused201 | unused202 | unused203 | unused204 | unused205 | unused206 | unused207 | unused208 | unused209 | unused21 | unused210 | unused211 | unused212 | unused213 | unused214 | unused215 | unused216 | unused217 | unused218 | unused219 | unused22 | unused220 | unused221 | unused222 | unused223 | unused224 | unused225 | unused226 | unused227 | unused228 | unused229 | unused23 | unused230 | unused231 | unused232 | unused233 | unused234 | unused235 | unused236 | unused237 | unused238 | unused239 | unused24 | unused240 | unused241 | unused242 | unused243 | unused244 | unused245 | unused246 | unused247 | unused248 | unused249 | unused25 | unused250 | unused251 | unused252 | unused253 | unused254 | unused255 | unused26 | unused27 | unused28 | unused29 | unused3 | unused30 | unused31 | unused32 | unused33 | unused34 | unused35 | unused36 | unused37 | unused38 | unused39 | unused4 | unused40 | unused41 | unused42 | unused43 | unused44 | unused45 | unused46 | unused47 | unused48 | unused49 | unused5 | unused50 | unused51 | unused52 | unused53 | unused54 | unused55 | unused56 | unused57 | unused58 | unused59 | unused6 | unused60 | unused61 | unused62 | unused63 | unused64 | unused65 | unused66 | unused67 | unused68 | unused69 | unused7 | unused70 | unused71 | unused72 | unused73 | unused74 | unused75 | unused76 | unused77 | unused78 | unused79 | unused8 | unused80 | unused81 | unused82 | unused83 | unused84 | unused85 | unused86 | unused87 | unused88 | unused89 | unused9 | unused90 | unused91 | unused92 | unused93 | unused94 | unused95 | unused96 | unused97 | unused98 | unused99>

	
The config key the volume will be moved to. Default is the source volume key.

	
--bwlimit <number> (0 - N) (default = clone limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--delete <boolean> (default = 0)

	
Delete the original volume after successful copy. By default the original is kept as an unused volume entry.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 " .
 "digest. This can be used to prevent concurrent modifications.

	
--target-digest <string>

	
Prevent changes if current configuration file of the target " .
 "container has a different SHA1 digest. This can be used to prevent " .
 "concurrent modifications.

pct move_volume
An alias for pct move-volume.
pct pending <vmid>
Get container configuration, including pending changes.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct pull <vmid> <path> <destination> [OPTIONS]
Copy a file from the container to the local system.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<path>: <string>

	
Path to a file inside the container to pull.

	
<destination>: <string>

	
Destination

	
--group <string>

	
Owner group name or id.

	
--perms <string>

	
File permissions to use (octal by default, prefix with 0x for hexadecimal).

	
--user <string>

	
Owner user name or id.

pct push <vmid> <file> <destination> [OPTIONS]
Copy a local file to the container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<file>: <string>

	
Path to a local file.

	
<destination>: <string>

	
Destination inside the container to write to.

	
--group <string>

	
Owner group name or id. When using a name it must exist inside the container.

	
--perms <string>

	
File permissions to use (octal by default, prefix with 0x for hexadecimal).

	
--user <string>

	
Owner user name or id. When using a name it must exist inside the container.

pct reboot <vmid> [OPTIONS]
Reboot the container by shutting it down, and starting it again. Applies
pending changes.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--timeout <integer> (0 - N)

	
Wait maximal timeout seconds for the shutdown.

pct remote-migrate <vmid> [<target-vmid>] <target-endpoint> --target-bridge <string> --target-storage <string> [OPTIONS]
Migrate container to a remote cluster. Creates a new migration task.
EXPERIMENTAL feature!
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target-vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<target-endpoint>: apitoken=<user@realm!token=SECRET> ,host=<ADDRESS> [,fingerprint=<FINGERPRINT>] [,port=<PORT>]

	
Remote target endpoint

	
--bwlimit <integer> (0 - N) (default = migrate limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--delete <boolean> (default = 0)

	
Delete the original CT and related data after successful migration. By default the original CT is kept on the source cluster in a stopped state.

	
--online <boolean>

	
Use online/live migration.

	
--restart <boolean>

	
Use restart migration

	
--target-bridge <string>

	
Mapping from source to target bridges. Providing only a single bridge ID maps all source bridges to that bridge. Providing the special value 1 will map each source bridge to itself.

	
--target-storage <string>

	
Mapping from source to target storages. Providing only a single storage ID maps all source storages to that storage. Providing the special value 1 will map each source storage to itself.

	
--timeout <integer> (default = 180)

	
Timeout in seconds for shutdown for restart migration

pct rescan [OPTIONS]
Rescan all storages and update disk sizes and unused disk images.
	
--dryrun <boolean> (default = 0)

	
Do not actually write changes out to conifg.

	
--vmid <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct resize <vmid> <disk> <size> [OPTIONS]
Resize a container mount point.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<disk>: <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs>

	
The disk you want to resize.

	
<size>: \+?\d+(\.\d+)?[KMGT]?

	
The new size. With the + sign the value is added to the actual size of the volume and without it, the value is taken as an absolute one. Shrinking disk size is not supported.

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.

pct restore <vmid> <ostemplate> [OPTIONS]
Create or restore a container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<ostemplate>: <string>

	
The OS template or backup file.

	
--arch <amd64 | arm64 | armhf | i386 | riscv32 | riscv64> (default = amd64)

	
OS architecture type.

	
--bwlimit <number> (0 - N) (default = restore limit from datacenter or storage config)

	
Override I/O bandwidth limit (in KiB/s).

	
--cmode <console | shell | tty> (default = tty)

	
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).

	
--console <boolean> (default = 1)

	
Attach a console device (/dev/console) to the container.

	
--cores <integer> (1 - 8192)

	
The number of cores assigned to the container. A container can use all available cores by default.

	
--cpulimit <number> (0 - 8192) (default = 0)

	
Limit of CPU usage.

Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.

	
--cpuunits <integer> (0 - 500000) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a container, will be clamped to [1, 10000] in cgroup v2.

	
--debug <boolean> (default = 0)

	
Try to be more verbose. For now this only enables debug log-level on start.

	
--description <string>

	
Description for the Container. Shown in the web-interface CT’s summary. This is saved as comment inside the configuration file.

	
--dev[n] [[path=]<Path>] [,gid=<integer>] [,mode=<Octal access mode>] [,uid=<integer>]

	
Device to pass through to the container

	
--features [force_rw_sys=<1|0>] [,fuse=<1|0>] [,keyctl=<1|0>] [,mknod=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]

	
Allow containers access to advanced features.

	
--force <boolean>

	
Allow to overwrite existing container.

	
--hookscript <string>

	
Script that will be exectued during various steps in the containers lifetime.

	
--hostname <string>

	
Set a host name for the container.

	
--ignore-unpack-errors <boolean>

	
Ignore errors when extracting the template.

	
--lock <backup | create | destroyed | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>

	
Lock/unlock the container.

	
--memory <integer> (16 - N) (default = 512)

	
Amount of RAM for the container in MB.

	
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container mount point. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume.

	
--nameserver <string>

	
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,link_down=<1|0>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]

	
Specifies network interfaces for the container.

	
--onboot <boolean> (default = 0)

	
Specifies whether a container will be started during system bootup.

	
--ostype <alpine | archlinux | centos | debian | devuan | fedora | gentoo | nixos | opensuse | ubuntu | unmanaged>

	
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.

	
--password <password>

	
Sets root password inside container.

	
--pool <string>

	
Add the VM to the specified pool.

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.

	
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container root.

	
--searchdomain <string>

	
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--ssh-public-keys <filepath>

	
Setup public SSH keys (one key per line, OpenSSH format).

	
--start <boolean> (default = 0)

	
Start the CT after its creation finished successfully.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--storage <string> (default = local)

	
Default Storage.

	
--swap <integer> (0 - N) (default = 512)

	
Amount of SWAP for the container in MB.

	
--tags <string>

	
Tags of the Container. This is only meta information.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--timezone <string>

	
Time zone to use in the container. If option isn’t set, then nothing will be done. Can be set to host to match the host time zone, or an arbitrary time zone option from /usr/share/zoneinfo/zone.tab

	
--tty <integer> (0 - 6) (default = 2)

	
Specify the number of tty available to the container

	
--unique <boolean>

	
Assign a unique random ethernet address.

Note
Requires option(s): restore

	
--unprivileged <boolean> (default = 0)

	
Makes the container run as unprivileged user. (Should not be modified manually.)

	
--unused[n] [volume=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

pct resume <vmid>
Resume the container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct rollback <vmid> <snapname> [OPTIONS]
Rollback LXC state to specified snapshot.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--start <boolean> (default = 0)

	
Whether the container should get started after rolling back successfully

pct set <vmid> [OPTIONS]
Set container options.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--arch <amd64 | arm64 | armhf | i386 | riscv32 | riscv64> (default = amd64)

	
OS architecture type.

	
--cmode <console | shell | tty> (default = tty)

	
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).

	
--console <boolean> (default = 1)

	
Attach a console device (/dev/console) to the container.

	
--cores <integer> (1 - 8192)

	
The number of cores assigned to the container. A container can use all available cores by default.

	
--cpulimit <number> (0 - 8192) (default = 0)

	
Limit of CPU usage.

Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.

	
--cpuunits <integer> (0 - 500000) (default = cgroup v1: 1024, cgroup v2: 100)

	
CPU weight for a container, will be clamped to [1, 10000] in cgroup v2.

	
--debug <boolean> (default = 0)

	
Try to be more verbose. For now this only enables debug log-level on start.

	
--delete <string>

	
A list of settings you want to delete.

	
--description <string>

	
Description for the Container. Shown in the web-interface CT’s summary. This is saved as comment inside the configuration file.

	
--dev[n] [[path=]<Path>] [,gid=<integer>] [,mode=<Octal access mode>] [,uid=<integer>]

	
Device to pass through to the container

	
--digest <string>

	
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.

	
--features [force_rw_sys=<1|0>] [,fuse=<1|0>] [,keyctl=<1|0>] [,mknod=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]

	
Allow containers access to advanced features.

	
--hookscript <string>

	
Script that will be exectued during various steps in the containers lifetime.

	
--hostname <string>

	
Set a host name for the container.

	
--lock <backup | create | destroyed | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>

	
Lock/unlock the container.

	
--memory <integer> (16 - N) (default = 512)

	
Amount of RAM for the container in MB.

	
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container mount point. Use the special syntax STORAGE_ID:SIZE_IN_GiB to allocate a new volume.

	
--nameserver <string>

	
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,link_down=<1|0>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]

	
Specifies network interfaces for the container.

	
--onboot <boolean> (default = 0)

	
Specifies whether a container will be started during system bootup.

	
--ostype <alpine | archlinux | centos | debian | devuan | fedora | gentoo | nixos | opensuse | ubuntu | unmanaged>

	
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.

	
--protection <boolean> (default = 0)

	
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.

	
--revert <string>

	
Revert a pending change.

	
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]

	
Use volume as container root.

	
--searchdomain <string>

	
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.

	
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `

	
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.

	
--swap <integer> (0 - N) (default = 512)

	
Amount of SWAP for the container in MB.

	
--tags <string>

	
Tags of the Container. This is only meta information.

	
--template <boolean> (default = 0)

	
Enable/disable Template.

	
--timezone <string>

	
Time zone to use in the container. If option isn’t set, then nothing will be done. Can be set to host to match the host time zone, or an arbitrary time zone option from /usr/share/zoneinfo/zone.tab

	
--tty <integer> (0 - 6) (default = 2)

	
Specify the number of tty available to the container

	
--unprivileged <boolean> (default = 0)

	
Makes the container run as unprivileged user. (Should not be modified manually.)

	
--unused[n] [volume=]<volume>

	
Reference to unused volumes. This is used internally, and should not be modified manually.

pct shutdown <vmid> [OPTIONS]
Shutdown the container. This will trigger a clean shutdown of the
container, see lxc-stop(1) for details.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--forceStop <boolean> (default = 0)

	
Make sure the Container stops.

	
--timeout <integer> (0 - N) (default = 60)

	
Wait maximal timeout seconds.

pct snapshot <vmid> <snapname> [OPTIONS]
Snapshot a container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<snapname>: <string>

	
The name of the snapshot.

	
--description <string>

	
A textual description or comment.

pct start <vmid> [OPTIONS]
Start the container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--debug <boolean> (default = 0)

	
If set, enables very verbose debug log-level on start.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

pct status <vmid> [OPTIONS]
Show CT status.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--verbose <boolean>

	
Verbose output format

pct stop <vmid> [OPTIONS]
Stop the container. This will abruptly stop all processes running in the
container.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
--skiplock <boolean>

	
Ignore locks - only root is allowed to use this option.

pct suspend <vmid>
Suspend the container. This is experimental.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct template <vmid>
Create a Template.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct unlock <vmid>
Unlock the VM.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

pct unmount <vmid>
Unmount the container’s filesystem.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

A.11. pveam - Proxmox VE Appliance Manager

pveam <COMMAND> [ARGS] [OPTIONS]
pveam available [OPTIONS]
List available templates.
	
--section <mail | system | turnkeylinux>

	
Restrict list to specified section.

pveam download <storage> <template>
Download appliance templates.
	
<storage>: <string>

	
The storage where the template will be stored

	
<template>: <string>

	
The template which will downloaded

pveam help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pveam list <storage>
Get list of all templates on storage
	
<storage>: <string>

	
Only list templates on specified storage

pveam remove <template_path>
Remove a template.
	
<template_path>: <string>

	
The template to remove.

pveam update
Update Container Template Database.

A.12. pvecm - Proxmox VE Cluster Manager

pvecm <COMMAND> [ARGS] [OPTIONS]
pvecm add <hostname> [OPTIONS]
Adds the current node to an existing cluster.
	
<hostname>: <string>

	
Hostname (or IP) of an existing cluster member.

	
--fingerprint ([A-Fa-f0-9]{2}:){31}[A-Fa-f0-9]{2}

	
Certificate SHA 256 fingerprint.

	
--force <boolean>

	
Do not throw error if node already exists.

	
--link[n] [address=]<IP> [,priority=<integer>]

	
Address and priority information of a single corosync link. (up to 8 links supported; link0..link7)

	
--nodeid <integer> (1 - N)

	
Node id for this node.

	
--use_ssh <boolean>

	
Always use SSH to join, even if peer may do it over API.

	
--votes <integer> (0 - N)

	
Number of votes for this node

pvecm addnode <node> [OPTIONS]
Adds a node to the cluster configuration. This call is for internal use.
	
<node>: <string>

	
The cluster node name.

	
--apiversion <integer>

	
The JOIN_API_VERSION of the new node.

	
--force <boolean>

	
Do not throw error if node already exists.

	
--link[n] [address=]<IP> [,priority=<integer>]

	
Address and priority information of a single corosync link. (up to 8 links supported; link0..link7)

	
--new_node_ip <string>

	
IP Address of node to add. Used as fallback if no links are given.

	
--nodeid <integer> (1 - N)

	
Node id for this node.

	
--votes <integer> (0 - N)

	
Number of votes for this node

pvecm apiver
Return the version of the cluster join API available on this node.
pvecm create <clustername> [OPTIONS]
Generate new cluster configuration. If no links given, default to local IP
address as link0.
	
<clustername>: <string>

	
The name of the cluster.

	
--link[n] [address=]<IP> [,priority=<integer>]

	
Address and priority information of a single corosync link. (up to 8 links supported; link0..link7)

	
--nodeid <integer> (1 - N)

	
Node id for this node.

	
--votes <integer> (1 - N)

	
Number of votes for this node.

pvecm delnode <node>
Removes a node from the cluster configuration.
	
<node>: <string>

	
The cluster node name.

pvecm expected <expected>
Tells corosync a new value of expected votes.
	
<expected>: <integer> (1 - N)

	
Expected votes

pvecm help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvecm keygen <filename>
Generate new cryptographic key for corosync.
	
<filename>: <string>

	
Output file name

pvecm mtunnel [<extra-args>] [OPTIONS]
Used by VM/CT migration - do not use manually.
	
<extra-args>: <array>

	
Extra arguments as array

	
--get_migration_ip <boolean> (default = 0)

	
return the migration IP, if configured

	
--migration_network <string>

	
the migration network used to detect the local migration IP

	
--run-command <boolean>

	
Run a command with a tcp socket as standard input. The IP address and port are printed via this command’s stdandard output first, each on a separate line.

pvecm nodes
Displays the local view of the cluster nodes.
pvecm qdevice remove
Remove a configured QDevice
pvecm qdevice setup <address> [OPTIONS]
Setup the use of a QDevice
	
<address>: <string>

	
Specifies the network address of an external corosync QDevice

	
--force <boolean>

	
Do not throw error on possible dangerous operations.

	
--network <string>

	
The network which should be used to connect to the external qdevice

pvecm status
Displays the local view of the cluster status.
pvecm updatecerts [OPTIONS]
Update node certificates (and generate all needed files/directories).
	
--force <boolean>

	
Force generation of new SSL certificate.

	
--silent <boolean>

	
Ignore errors (i.e. when cluster has no quorum).

A.13. pvesr - Proxmox VE Storage Replication

pvesr <COMMAND> [ARGS] [OPTIONS]
pvesr create-local-job <id> <target> [OPTIONS]
Create a new replication job
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
<target>: <string>

	
Target node.

	
--comment <string>

	
Description.

	
--disable <boolean>

	
Flag to disable/deactivate the entry.

	
--rate <number> (1 - N)

	
Rate limit in mbps (megabytes per second) as floating point number.

	
--remove_job <full | local>

	
Mark the replication job for removal. The job will remove all local replication snapshots. When set to full, it also tries to remove replicated volumes on the target. The job then removes itself from the configuration file.

	
--schedule <string> (default = */15)

	
Storage replication schedule. The format is a subset of systemd calendar events.

	
--source <string>

	
For internal use, to detect if the guest was stolen.

pvesr delete <id> [OPTIONS]
Mark replication job for removal.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
--force <boolean> (default = 0)

	
Will remove the jobconfig entry, but will not cleanup.

	
--keep <boolean> (default = 0)

	
Keep replicated data at target (do not remove).

pvesr disable <id>
Disable a replication job.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

pvesr enable <id>
Enable a replication job.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

pvesr finalize-local-job <id> [<extra-args>] [OPTIONS]
Finalize a replication job. This removes all replications snapshots with
timestamps different than <last_sync>.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
<extra-args>: <array>

	
The list of volume IDs to consider.

	
--last_sync <integer> (0 - N)

	
Time (UNIX epoch) of last successful sync. If not specified, all replication snapshots gets removed.

pvesr help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvesr list
List replication jobs.
pvesr prepare-local-job <id> [<extra-args>] [OPTIONS]
Prepare for starting a replication job. This is called on the target node
before replication starts. This call is for internal use, and return a JSON
object on stdout. The method first test if VM <vmid> reside on the local
node. If so, stop immediately. After that the method scans all volume IDs
for snapshots, and removes all replications snapshots with timestamps
different than <last_sync>. It also removes any unused volumes. Returns a
hash with boolean markers for all volumes with existing replication
snapshots.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
<extra-args>: <array>

	
The list of volume IDs to consider.

	
--force <boolean> (default = 0)

	
Allow to remove all existion volumes (empty volume list).

	
--last_sync <integer> (0 - N)

	
Time (UNIX epoch) of last successful sync. If not specified, all replication snapshots get removed.

	
--parent_snapname <string>

	
The name of the snapshot.

	
--scan <string>

	
List of storage IDs to scan for stale volumes.

pvesr read <id>
Read replication job configuration.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

pvesr run [OPTIONS]
This method is called by the systemd-timer and executes all (or a specific)
sync jobs.
	
--id [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
--mail <boolean> (default = 0)

	
Send an email notification in case of a failure.

	
--verbose <boolean> (default = 0)

	
Print more verbose logs to stdout.

pvesr schedule-now <id>
Schedule replication job to start as soon as possible.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

pvesr set-state <vmid> <state>
Set the job replication state on migration. This call is for internal use.
It will accept the job state as ja JSON obj.
	
<vmid>: <integer> (100 - 999999999)

	
The (unique) ID of the VM.

	
<state>: <string>

	
Job state as JSON decoded string.

pvesr status [OPTIONS]
List status of all replication jobs on this node.
	
--guest <integer> (100 - 999999999)

	
Only list replication jobs for this guest.

pvesr update <id> [OPTIONS]
Update replication job configuration.
	
<id>: [1-9][0-9]{2,8}-\d{1,9}

	
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.

	
--comment <string>

	
Description.

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--disable <boolean>

	
Flag to disable/deactivate the entry.

	
--rate <number> (1 - N)

	
Rate limit in mbps (megabytes per second) as floating point number.

	
--remove_job <full | local>

	
Mark the replication job for removal. The job will remove all local replication snapshots. When set to full, it also tries to remove replicated volumes on the target. The job then removes itself from the configuration file.

	
--schedule <string> (default = */15)

	
Storage replication schedule. The format is a subset of systemd calendar events.

	
--source <string>

	
For internal use, to detect if the guest was stolen.

A.14. pveum - Proxmox VE User Manager

pveum <COMMAND> [ARGS] [OPTIONS]
pveum acl delete <path> --roles <string> [OPTIONS]
Update Access Control List (add or remove permissions).
	
<path>: <string>

	
Access control path

	
--groups <string>

	
List of groups.

	
--propagate <boolean> (default = 1)

	
Allow to propagate (inherit) permissions.

	
--roles <string>

	
List of roles.

	
--tokens <string>

	
List of API tokens.

	
--users <string>

	
List of users.

pveum acl list [FORMAT_OPTIONS]
Get Access Control List (ACLs).
pveum acl modify <path> --roles <string> [OPTIONS]
Update Access Control List (add or remove permissions).
	
<path>: <string>

	
Access control path

	
--groups <string>

	
List of groups.

	
--propagate <boolean> (default = 1)

	
Allow to propagate (inherit) permissions.

	
--roles <string>

	
List of roles.

	
--tokens <string>

	
List of API tokens.

	
--users <string>

	
List of users.

pveum acldel
An alias for pveum acl delete.
pveum aclmod
An alias for pveum acl modify.
pveum group add <groupid> [OPTIONS]
Create new group.
	
<groupid>: <string>

	
no description available

	
--comment <string>

	
no description available

pveum group delete <groupid>
Delete group.
	
<groupid>: <string>

	
no description available

pveum group list [FORMAT_OPTIONS]
Group index.
pveum group modify <groupid> [OPTIONS]
Update group data.
	
<groupid>: <string>

	
no description available

	
--comment <string>

	
no description available

pveum groupadd
An alias for pveum group add.
pveum groupdel
An alias for pveum group delete.
pveum groupmod
An alias for pveum group modify.
pveum help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pveum passwd <userid> [OPTIONS]
Change user password.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
--confirmation-password <string>

	
The current password of the user performing the change.

pveum pool add <poolid> [OPTIONS]
Create new pool.
	
<poolid>: <string>

	
no description available

	
--comment <string>

	
no description available

pveum pool delete <poolid>
Delete pool.
	
<poolid>: <string>

	
no description available

pveum pool list [OPTIONS] [FORMAT_OPTIONS]
List pools or get pool configuration.
	
--poolid <string>

	
no description available

	
--type <lxc | qemu | storage>

	
no description available

Note
Requires option(s): poolid

pveum pool modify <poolid> [OPTIONS]
Update pool.
	
<poolid>: <string>

	
no description available

	
--allow-move <boolean> (default = 0)

	
Allow adding a guest even if already in another pool. The guest will be removed from its current pool and added to this one.

	
--comment <string>

	
no description available

	
--delete <boolean> (default = 0)

	
Remove the passed VMIDs and/or storage IDs instead of adding them.

	
--storage <string>

	
List of storage IDs to add or remove from this pool.

	
--vms <string>

	
List of guest VMIDs to add or remove from this pool.

pveum realm add <realm> --type <string> [OPTIONS]
Add an authentication server.
	
<realm>: <string>

	
Authentication domain ID

	
--acr-values ^[^\x00-\x1F\x7F <>#"]*$

	
Specifies the Authentication Context Class Reference values that theAuthorization Server is being requested to use for the Auth Request.

	
--autocreate <boolean> (default = 0)

	
Automatically create users if they do not exist.

	
--base_dn <string>

	
LDAP base domain name

	
--bind_dn <string>

	
LDAP bind domain name

	
--capath <string> (default = /etc/ssl/certs)

	
Path to the CA certificate store

	
--case-sensitive <boolean> (default = 1)

	
username is case-sensitive

	
--cert <string>

	
Path to the client certificate

	
--certkey <string>

	
Path to the client certificate key

	
--check-connection <boolean> (default = 0)

	
Check bind connection to the server.

	
--client-id <string>

	
OpenID Client ID

	
--client-key <string>

	
OpenID Client Key

	
--comment <string>

	
Description.

	
--default <boolean>

	
Use this as default realm

	
--domain \S+

	
AD domain name

	
--filter <string>

	
LDAP filter for user sync.

	
--group_classes <string> (default = groupOfNames, group, univentionGroup, ipausergroup)

	
The objectclasses for groups.

	
--group_dn <string>

	
LDAP base domain name for group sync. If not set, the base_dn will be used.

	
--group_filter <string>

	
LDAP filter for group sync.

	
--group_name_attr <string>

	
LDAP attribute representing a groups name. If not set or found, the first value of the DN will be used as name.

	
--issuer-url <string>

	
OpenID Issuer Url

	
--mode <ldap | ldap+starttls | ldaps> (default = ldap)

	
LDAP protocol mode.

	
--password <string>

	
LDAP bind password. Will be stored in /etc/pve/priv/realm/<REALM>.pw.

	
--port <integer> (1 - 65535)

	
Server port.

	
--prompt (?:none|login|consent|select_account|\S+)

	
Specifies whether the Authorization Server prompts the End-User for reauthentication and consent.

	
--scopes <string> (default = email profile)

	
Specifies the scopes (user details) that should be authorized and returned, for example email or profile.

	
--secure <boolean>

	
Use secure LDAPS protocol. DEPRECATED: use mode instead.

	
--server1 <string>

	
Server IP address (or DNS name)

	
--server2 <string>

	
Fallback Server IP address (or DNS name)

	
--sslversion <tlsv1 | tlsv1_1 | tlsv1_2 | tlsv1_3>

	
LDAPS TLS/SSL version. It’s not recommended to use version older than 1.2!

	
--sync-defaults-options [enable-new=<1|0>] [,full=<1|0>] [,purge=<1|0>] [,remove-vanished=([acl];[properties];[entry])|none] [,scope=<users|groups|both>]

	
The default options for behavior of synchronizations.

	
--sync_attributes \w+=[^,]+(,\s*\w+=[^,]+)*

	
Comma separated list of key=value pairs for specifying which LDAP attributes map to which PVE user field. For example, to map the LDAP attribute mail to PVEs email, write email=mail. By default, each PVE user field is represented by an LDAP attribute of the same name.

	
--tfa type=<TFATYPE> [,digits=<COUNT>] [,id=<ID>] [,key=<KEY>] [,step=<SECONDS>] [,url=<URL>]

	
Use Two-factor authentication.

	
--type <ad | ldap | openid | pam | pve>

	
Realm type.

	
--user_attr \S{2,}

	
LDAP user attribute name

	
--user_classes <string> (default = inetorgperson, posixaccount, person, user)

	
The objectclasses for users.

	
--username-claim <string>

	
OpenID claim used to generate the unique username.

	
--verify <boolean> (default = 0)

	
Verify the server’s SSL certificate

pveum realm delete <realm>
Delete an authentication server.
	
<realm>: <string>

	
Authentication domain ID

pveum realm list [FORMAT_OPTIONS]
Authentication domain index.
pveum realm modify <realm> [OPTIONS]
Update authentication server settings.
	
<realm>: <string>

	
Authentication domain ID

	
--acr-values ^[^\x00-\x1F\x7F <>#"]*$

	
Specifies the Authentication Context Class Reference values that theAuthorization Server is being requested to use for the Auth Request.

	
--autocreate <boolean> (default = 0)

	
Automatically create users if they do not exist.

	
--base_dn <string>

	
LDAP base domain name

	
--bind_dn <string>

	
LDAP bind domain name

	
--capath <string> (default = /etc/ssl/certs)

	
Path to the CA certificate store

	
--case-sensitive <boolean> (default = 1)

	
username is case-sensitive

	
--cert <string>

	
Path to the client certificate

	
--certkey <string>

	
Path to the client certificate key

	
--check-connection <boolean> (default = 0)

	
Check bind connection to the server.

	
--client-id <string>

	
OpenID Client ID

	
--client-key <string>

	
OpenID Client Key

	
--comment <string>

	
Description.

	
--default <boolean>

	
Use this as default realm

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--domain \S+

	
AD domain name

	
--filter <string>

	
LDAP filter for user sync.

	
--group_classes <string> (default = groupOfNames, group, univentionGroup, ipausergroup)

	
The objectclasses for groups.

	
--group_dn <string>

	
LDAP base domain name for group sync. If not set, the base_dn will be used.

	
--group_filter <string>

	
LDAP filter for group sync.

	
--group_name_attr <string>

	
LDAP attribute representing a groups name. If not set or found, the first value of the DN will be used as name.

	
--issuer-url <string>

	
OpenID Issuer Url

	
--mode <ldap | ldap+starttls | ldaps> (default = ldap)

	
LDAP protocol mode.

	
--password <string>

	
LDAP bind password. Will be stored in /etc/pve/priv/realm/<REALM>.pw.

	
--port <integer> (1 - 65535)

	
Server port.

	
--prompt (?:none|login|consent|select_account|\S+)

	
Specifies whether the Authorization Server prompts the End-User for reauthentication and consent.

	
--scopes <string> (default = email profile)

	
Specifies the scopes (user details) that should be authorized and returned, for example email or profile.

	
--secure <boolean>

	
Use secure LDAPS protocol. DEPRECATED: use mode instead.

	
--server1 <string>

	
Server IP address (or DNS name)

	
--server2 <string>

	
Fallback Server IP address (or DNS name)

	
--sslversion <tlsv1 | tlsv1_1 | tlsv1_2 | tlsv1_3>

	
LDAPS TLS/SSL version. It’s not recommended to use version older than 1.2!

	
--sync-defaults-options [enable-new=<1|0>] [,full=<1|0>] [,purge=<1|0>] [,remove-vanished=([acl];[properties];[entry])|none] [,scope=<users|groups|both>]

	
The default options for behavior of synchronizations.

	
--sync_attributes \w+=[^,]+(,\s*\w+=[^,]+)*

	
Comma separated list of key=value pairs for specifying which LDAP attributes map to which PVE user field. For example, to map the LDAP attribute mail to PVEs email, write email=mail. By default, each PVE user field is represented by an LDAP attribute of the same name.

	
--tfa type=<TFATYPE> [,digits=<COUNT>] [,id=<ID>] [,key=<KEY>] [,step=<SECONDS>] [,url=<URL>]

	
Use Two-factor authentication.

	
--user_attr \S{2,}

	
LDAP user attribute name

	
--user_classes <string> (default = inetorgperson, posixaccount, person, user)

	
The objectclasses for users.

	
--verify <boolean> (default = 0)

	
Verify the server’s SSL certificate

pveum realm sync <realm> [OPTIONS]
Syncs users and/or groups from the configured LDAP to user.cfg. NOTE:
Synced groups will have the name name-$realm, so make sure those groups
do not exist to prevent overwriting.
	
<realm>: <string>

	
Authentication domain ID

	
--dry-run <boolean> (default = 0)

	
If set, does not write anything.

	
--enable-new <boolean> (default = 1)

	
Enable newly synced users immediately.

	
--full <boolean>

	
DEPRECATED: use remove-vanished instead. If set, uses the LDAP Directory as source of truth, deleting users or groups not returned from the sync and removing all locally modified properties of synced users. If not set, only syncs information which is present in the synced data, and does not delete or modify anything else.

	
--purge <boolean>

	
DEPRECATED: use remove-vanished instead. Remove ACLs for users or groups which were removed from the config during a sync.

	
--remove-vanished ([acl];[properties];[entry])|none (default = none)

	
A semicolon-seperated list of things to remove when they or the user vanishes during a sync. The following values are possible: entry removes the user/group when not returned from the sync. properties removes the set properties on existing user/group that do not appear in the source (even custom ones). acl removes acls when the user/group is not returned from the sync. Instead of a list it also can be none (the default).

	
--scope <both | groups | users>

	
Select what to sync.

pveum role add <roleid> [OPTIONS]
Create new role.
	
<roleid>: <string>

	
no description available

	
--privs <string>

	
no description available

pveum role delete <roleid>
Delete role.
	
<roleid>: <string>

	
no description available

pveum role list [FORMAT_OPTIONS]
Role index.
pveum role modify <roleid> [OPTIONS]
Update an existing role.
	
<roleid>: <string>

	
no description available

	
--append <boolean>

	
no description available

Note
Requires option(s): privs

	
--privs <string>

	
no description available

pveum roleadd
An alias for pveum role add.
pveum roledel
An alias for pveum role delete.
pveum rolemod
An alias for pveum role modify.
pveum ticket <username> [OPTIONS]
Create or verify authentication ticket.
	
<username>: <string>

	
User name

	
--new-format <boolean> (default = 1)

	
This parameter is now ignored and assumed to be 1.

	
--otp <string>

	
One-time password for Two-factor authentication.

	
--path <string>

	
Verify ticket, and check if user have access privs on path

Note
Requires option(s): privs

	
--privs <string>

	
Verify ticket, and check if user have access privs on path

Note
Requires option(s): path

	
--realm <string>

	
You can optionally pass the realm using this parameter. Normally the realm is simply added to the username <username>@<relam>.

	
--tfa-challenge <string>

	
The signed TFA challenge string the user wants to respond to.

pveum user add <userid> [OPTIONS]
Create new user.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
--comment <string>

	
no description available

	
--email <string>

	
no description available

	
--enable <boolean> (default = 1)

	
Enable the account (default). You can set this to 0 to disable the account

	
--expire <integer> (0 - N)

	
Account expiration date (seconds since epoch). 0 means no expiration date.

	
--firstname <string>

	
no description available

	
--groups <string>

	
no description available

	
--keys [0-9a-zA-Z!=]{0,4096}

	
Keys for two factor auth (yubico).

	
--lastname <string>

	
no description available

	
--password <string>

	
Initial password.

pveum user delete <userid>
Delete user.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

pveum user list [OPTIONS] [FORMAT_OPTIONS]
User index.
	
--enabled <boolean>

	
Optional filter for enable property.

	
--full <boolean> (default = 0)

	
Include group and token information.

pveum user modify <userid> [OPTIONS]
Update user configuration.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
--append <boolean>

	
no description available

Note
Requires option(s): groups

	
--comment <string>

	
no description available

	
--email <string>

	
no description available

	
--enable <boolean> (default = 1)

	
Enable the account (default). You can set this to 0 to disable the account

	
--expire <integer> (0 - N)

	
Account expiration date (seconds since epoch). 0 means no expiration date.

	
--firstname <string>

	
no description available

	
--groups <string>

	
no description available

	
--keys [0-9a-zA-Z!=]{0,4096}

	
Keys for two factor auth (yubico).

	
--lastname <string>

	
no description available

pveum user permissions [<userid>] [OPTIONS] [FORMAT_OPTIONS]
Retrieve effective permissions of given user/token.
	
<userid>: (?^:^(?^:[^\s:/]+)\@(?^:[A-Za-z][A-Za-z0-9\.\-_]+)(?:!(?^:[A-Za-z][A-Za-z0-9\.\-_]+))?$)

	
User ID or full API token ID

	
--path <string>

	
Only dump this specific path, not the whole tree.

pveum user tfa delete <userid> [OPTIONS]
Delete TFA entries from a user.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
--id <string>

	
The TFA ID, if none provided, all TFA entries will be deleted.

pveum user tfa list [<userid>]
List TFA entries.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

pveum user tfa unlock <userid>
Unlock a user’s TFA authentication.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

pveum user token add <userid> <tokenid> [OPTIONS] [FORMAT_OPTIONS]
Generate a new API token for a specific user. NOTE: returns API token
value, which needs to be stored as it cannot be retrieved afterwards!
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
<tokenid>: (?^:[A-Za-z][A-Za-z0-9\.\-_]+)

	
User-specific token identifier.

	
--comment <string>

	
no description available

	
--expire <integer> (0 - N) (default = same as user)

	
API token expiration date (seconds since epoch). 0 means no expiration date.

	
--privsep <boolean> (default = 1)

	
Restrict API token privileges with separate ACLs (default), or give full privileges of corresponding user.

pveum user token list <userid> [FORMAT_OPTIONS]
Get user API tokens.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

pveum user token modify <userid> <tokenid> [OPTIONS] [FORMAT_OPTIONS]
Update API token for a specific user.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
<tokenid>: (?^:[A-Za-z][A-Za-z0-9\.\-_]+)

	
User-specific token identifier.

	
--comment <string>

	
no description available

	
--expire <integer> (0 - N) (default = same as user)

	
API token expiration date (seconds since epoch). 0 means no expiration date.

	
--privsep <boolean> (default = 1)

	
Restrict API token privileges with separate ACLs (default), or give full privileges of corresponding user.

pveum user token permissions <userid> <tokenid> [OPTIONS] [FORMAT_OPTIONS]
Retrieve effective permissions of given token.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
<tokenid>: (?^:[A-Za-z][A-Za-z0-9\.\-_]+)

	
User-specific token identifier.

	
--path <string>

	
Only dump this specific path, not the whole tree.

pveum user token remove <userid> <tokenid> [FORMAT_OPTIONS]
Remove API token for a specific user.
	
<userid>: <string>

	
Full User ID, in the name@realm format.

	
<tokenid>: (?^:[A-Za-z][A-Za-z0-9\.\-_]+)

	
User-specific token identifier.

pveum useradd
An alias for pveum user add.
pveum userdel
An alias for pveum user delete.
pveum usermod
An alias for pveum user modify.

A.15. vzdump - Backup Utility for VMs and Containers

vzdump help
vzdump {<vmid>} [OPTIONS]
Create backup.
	
<vmid>: <string>

	
The ID of the guest system you want to backup.

	
--all <boolean> (default = 0)

	
Backup all known guest systems on this host.

	
--bwlimit <integer> (0 - N) (default = 0)

	
Limit I/O bandwidth (in KiB/s).

	
--compress <0 | 1 | gzip | lzo | zstd> (default = 0)

	
Compress dump file.

	
--dumpdir <string>

	
Store resulting files to specified directory.

	
--exclude <string>

	
Exclude specified guest systems (assumes --all)

	
--exclude-path <array>

	
Exclude certain files/directories (shell globs). Paths starting with / are anchored to the container’s root, other paths match relative to each subdirectory.

	
--ionice <integer> (0 - 8) (default = 7)

	
Set IO priority when using the BFQ scheduler. For snapshot and suspend mode backups of VMs, this only affects the compressor. A value of 8 means the idle priority is used, otherwise the best-effort priority is used with the specified value.

	
--lockwait <integer> (0 - N) (default = 180)

	
Maximal time to wait for the global lock (minutes).

	
--mailnotification <always | failure> (default = always)

	
Deprecated: use notification targets/matchers instead. Specify when to send a notification mail

	
--mailto <string>

	
Deprecated: Use notification targets/matchers instead. Comma-separated list of email addresses or users that should receive email notifications.

	
--maxfiles <integer> (1 - N)

	
Deprecated: use prune-backups instead. Maximal number of backup files per guest system.

	
--mode <snapshot | stop | suspend> (default = snapshot)

	
Backup mode.

	
--node <string>

	
Only run if executed on this node.

	
--notes-template <string>

	
Template string for generating notes for the backup(s). It can contain variables which will be replaced by their values. Currently supported are {\{\cluster}}, {\{\guestname}}, {\{\node}}, and {\{\vmid}}, but more might be added in the future. Needs to be a single line, newline and backslash need to be escaped as \n and \\ respectively.

Note
Requires option(s): storage

	
--notification-mode <auto | legacy-sendmail | notification-system> (default = auto)

	
Determine which notification system to use. If set to legacy-sendmail, vzdump will consider the mailto/mailnotification parameters and send emails to the specified address(es) via the sendmail command. If set to notification-system, a notification will be sent via PVE’s notification system, and the mailto and mailnotification will be ignored. If set to auto (default setting), an email will be sent if mailto is set, and the notification system will be used if not.

	
--notification-policy <always | failure | never> (default = always)

	
Deprecated: Do not use

	
--notification-target <string>

	
Deprecated: Do not use

	
--performance [max-workers=<integer>] [,pbs-entries-max=<integer>]

	
Other performance-related settings.

	
--pigz <integer> (default = 0)

	
Use pigz instead of gzip when N>0. N=1 uses half of cores, N>1 uses N as thread count.

	
--pool <string>

	
Backup all known guest systems included in the specified pool.

	
--protected <boolean>

	
If true, mark backup(s) as protected.

Note
Requires option(s): storage

	
--prune-backups [keep-all=<1|0>] [,keep-daily=<N>] [,keep-hourly=<N>] [,keep-last=<N>] [,keep-monthly=<N>] [,keep-weekly=<N>] [,keep-yearly=<N>] (default = keep-all=1)

	
Use these retention options instead of those from the storage configuration.

	
--quiet <boolean> (default = 0)

	
Be quiet.

	
--remove <boolean> (default = 1)

	
Prune older backups according to prune-backups.

	
--script <string>

	
Use specified hook script.

	
--stdexcludes <boolean> (default = 1)

	
Exclude temporary files and logs.

	
--stdout <boolean>

	
Write tar to stdout, not to a file.

	
--stop <boolean> (default = 0)

	
Stop running backup jobs on this host.

	
--stopwait <integer> (0 - N) (default = 10)

	
Maximal time to wait until a guest system is stopped (minutes).

	
--storage <string>

	
Store resulting file to this storage.

	
--tmpdir <string>

	
Store temporary files to specified directory.

	
--zstd <integer> (default = 1)

	
Zstd threads. N=0 uses half of the available cores, if N is set to a value bigger than 0, N is used as thread count.

A.16. ha-manager - Proxmox VE HA Manager

ha-manager <COMMAND> [ARGS] [OPTIONS]
ha-manager add <sid> [OPTIONS]
Create a new HA resource.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

	
--comment <string>

	
Description.

	
--group <string>

	
The HA group identifier.

	
--max_relocate <integer> (0 - N) (default = 1)

	
Maximal number of service relocate tries when a service failes to start.

	
--max_restart <integer> (0 - N) (default = 1)

	
Maximal number of tries to restart the service on a node after its start failed.

	
--state <disabled | enabled | ignored | started | stopped> (default = started)

	
Requested resource state.

	
--type <ct | vm>

	
Resource type.

ha-manager config [OPTIONS]
List HA resources.
	
--type <ct | vm>

	
Only list resources of specific type

ha-manager crm-command migrate <sid> <node>
Request resource migration (online) to another node.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

	
<node>: <string>

	
Target node.

ha-manager crm-command node-maintenance disable <node>
Change the node-maintenance request state.
	
<node>: <string>

	
The cluster node name.

ha-manager crm-command node-maintenance enable <node>
Change the node-maintenance request state.
	
<node>: <string>

	
The cluster node name.

ha-manager crm-command relocate <sid> <node>
Request resource relocatzion to another node. This stops the service on the
old node, and restarts it on the target node.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

	
<node>: <string>

	
Target node.

ha-manager crm-command stop <sid> <timeout>
Request the service to be stopped.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

	
<timeout>: <integer> (0 - N)

	
Timeout in seconds. If set to 0 a hard stop will be performed.

ha-manager groupadd <group> --nodes <string> [OPTIONS]
Create a new HA group.
	
<group>: <string>

	
The HA group identifier.

	
--comment <string>

	
Description.

	
--nodes <node>[:<pri>]{,<node>[:<pri>]}*

	
List of cluster node names with optional priority.

	
--nofailback <boolean> (default = 0)

	
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.

	
--restricted <boolean> (default = 0)

	
Resources bound to restricted groups may only run on nodes defined by the group.

	
--type <group>

	
Group type.

ha-manager groupconfig
Get HA groups.
ha-manager groupremove <group>
Delete ha group configuration.
	
<group>: <string>

	
The HA group identifier.

ha-manager groupset <group> [OPTIONS]
Update ha group configuration.
	
<group>: <string>

	
The HA group identifier.

	
--comment <string>

	
Description.

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--nodes <node>[:<pri>]{,<node>[:<pri>]}*

	
List of cluster node names with optional priority.

	
--nofailback <boolean> (default = 0)

	
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.

	
--restricted <boolean> (default = 0)

	
Resources bound to restricted groups may only run on nodes defined by the group.

ha-manager help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

ha-manager migrate
An alias for ha-manager crm-command migrate.
ha-manager relocate
An alias for ha-manager crm-command relocate.
ha-manager remove <sid>
Delete resource configuration.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

ha-manager set <sid> [OPTIONS]
Update resource configuration.
	
<sid>: <type>:<name>

	
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).

	
--comment <string>

	
Description.

	
--delete <string>

	
A list of settings you want to delete.

	
--digest <string>

	
Prevent changes if current configuration file has a different digest. This can be used to prevent concurrent modifications.

	
--group <string>

	
The HA group identifier.

	
--max_relocate <integer> (0 - N) (default = 1)

	
Maximal number of service relocate tries when a service failes to start.

	
--max_restart <integer> (0 - N) (default = 1)

	
Maximal number of tries to restart the service on a node after its start failed.

	
--state <disabled | enabled | ignored | started | stopped> (default = started)

	
Requested resource state.

ha-manager status [OPTIONS]
Display HA manger status.
	
--verbose <boolean> (default = 0)

	
Verbose output. Include complete CRM and LRM status (JSON).

Appendix B. Service Daemons

B.1. pve-firewall - Proxmox VE Firewall Daemon

pve-firewall <COMMAND> [ARGS] [OPTIONS]
pve-firewall compile
Compile and print firewall rules. This is useful for testing.
pve-firewall help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pve-firewall localnet
Print information about local network.
pve-firewall restart
Restart the Proxmox VE firewall service.
pve-firewall simulate [OPTIONS]
Simulate firewall rules. This does not simulates the kernel routing
table, but simply assumes that routing from source zone to destination zone
is possible.
	
--dest <string>

	
Destination IP address.

	
--dport <integer>

	
Destination port.

	
--from (host|outside|vm\d+|ct\d+|vmbr\d+/\S+) (default = outside)

	
Source zone.

	
--protocol (tcp|udp) (default = tcp)

	
Protocol.

	
--source <string>

	
Source IP address.

	
--sport <integer>

	
Source port.

	
--to (host|outside|vm\d+|ct\d+|vmbr\d+/\S+) (default = host)

	
Destination zone.

	
--verbose <boolean> (default = 0)

	
Verbose output.

pve-firewall start [OPTIONS]
Start the Proxmox VE firewall service.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pve-firewall status
Get firewall status.
pve-firewall stop
Stop the Proxmox VE firewall service. Note, stopping actively removes all
Proxmox VE related iptable rules rendering the host potentially
unprotected.

B.2. pvedaemon - Proxmox VE API Daemon

pvedaemon <COMMAND> [ARGS] [OPTIONS]
pvedaemon help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvedaemon restart
Restart the daemon (or start if not running).
pvedaemon start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pvedaemon status
Get daemon status.
pvedaemon stop
Stop the daemon.

B.3. pveproxy - Proxmox VE API Proxy Daemon

pveproxy <COMMAND> [ARGS] [OPTIONS]
pveproxy help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pveproxy restart
Restart the daemon (or start if not running).
pveproxy start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pveproxy status
Get daemon status.
pveproxy stop
Stop the daemon.

B.4. pvestatd - Proxmox VE Status Daemon

pvestatd <COMMAND> [ARGS] [OPTIONS]
pvestatd help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvestatd restart
Restart the daemon (or start if not running).
pvestatd start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pvestatd status
Get daemon status.
pvestatd stop
Stop the daemon.

B.5. spiceproxy - SPICE Proxy Service

spiceproxy <COMMAND> [ARGS] [OPTIONS]
spiceproxy help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

spiceproxy restart
Restart the daemon (or start if not running).
spiceproxy start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

spiceproxy status
Get daemon status.
spiceproxy stop
Stop the daemon.

B.6. pmxcfs - Proxmox Cluster File System

pmxcfs [OPTIONS]
Help Options:
	
-h, --help

	
Show help options

Application Options:
	
-d, --debug

	
Turn on debug messages

	
-f, --foreground

	
Do not daemonize server

	
-l, --local

	
Force local mode (ignore corosync.conf, force quorum)

This service is usually started and managed using systemd toolset. The
service is called pve-cluster.
systemctl start pve-cluster
systemctl stop pve-cluster
systemctl status pve-cluster

B.7. pve-ha-crm - Cluster Resource Manager Daemon

pve-ha-crm <COMMAND> [ARGS] [OPTIONS]
pve-ha-crm help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pve-ha-crm start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pve-ha-crm status
Get daemon status.
pve-ha-crm stop
Stop the daemon.

B.8. pve-ha-lrm - Local Resource Manager Daemon

pve-ha-lrm <COMMAND> [ARGS] [OPTIONS]
pve-ha-lrm help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pve-ha-lrm start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pve-ha-lrm status
Get daemon status.
pve-ha-lrm stop
Stop the daemon.

B.9. pvescheduler - Proxmox VE Scheduler Daemon

pvescheduler <COMMAND> [ARGS] [OPTIONS]
pvescheduler help [OPTIONS]
Get help about specified command.
	
--extra-args <array>

	
Shows help for a specific command

	
--verbose <boolean>

	
Verbose output format.

pvescheduler restart
Restart the daemon (or start if not running).
pvescheduler start [OPTIONS]
Start the daemon.
	
--debug <boolean> (default = 0)

	
Debug mode - stay in foreground

pvescheduler status
Get daemon status.
pvescheduler stop
Stop the daemon.

Appendix C. Configuration Files

C.1. Datacenter Configuration

The file /etc/pve/datacenter.cfg is a configuration file for
Proxmox VE. It contains cluster wide default values used by all nodes.
C.1.1. File Format

The file uses a simple colon separated key/value format. Each line has
the following format:
OPTION: value
Blank lines in the file are ignored, and lines starting with a #
character are treated as comments and are also ignored.

C.1.2. Options

	
bwlimit: [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]

	
Set I/O bandwidth limit for various operations (in KiB/s).

	
clone=<LIMIT>

	
bandwidth limit in KiB/s for cloning disks

	
default=<LIMIT>

	
default bandwidth limit in KiB/s

	
migration=<LIMIT>

	
bandwidth limit in KiB/s for migrating guests (including moving local disks)

	
move=<LIMIT>

	
bandwidth limit in KiB/s for moving disks

	
restore=<LIMIT>

	
bandwidth limit in KiB/s for restoring guests from backups

	
console: <applet | html5 | vv | xtermjs>

	
Select the default Console viewer. You can either use the builtin java applet (VNC; deprecated and maps to html5), an external virt-viewer comtatible application (SPICE), an HTML5 based vnc viewer (noVNC), or an HTML5 based console client (xtermjs). If the selected viewer is not available (e.g. SPICE not activated for the VM), the fallback is noVNC.

	
crs: [ha=<basic|static>] [,ha-rebalance-on-start=<1|0>]

	
Cluster resource scheduling settings.

	
ha=<basic | static> (default = basic)

	
Configures how the HA manager should select nodes to start or recover services. With basic, only the number of services is used, with static, static CPU and memory configuration of services is considered.

	
ha-rebalance-on-start=<boolean> (default = 0)

	
Set to use CRS for selecting a suited node when a HA services request-state changes from stop to start.

	
description: <string>

	
Datacenter description. Shown in the web-interface datacenter notes panel. This is saved as comment inside the configuration file.

	
email_from: <string>

	
Specify email address to send notification from (default is root@$hostname)

	
fencing: <both | hardware | watchdog> (default = watchdog)

	
Set the fencing mode of the HA cluster. Hardware mode needs a valid configuration of fence devices in /etc/pve/ha/fence.cfg. With both all two modes are used.

Warning
hardware and both are EXPERIMENTAL & WIP

	
ha: shutdown_policy=<enum>

	
Cluster wide HA settings.

	
shutdown_policy=<conditional | failover | freeze | migrate> (default = conditional)

	
Describes the policy for handling HA services on poweroff or reboot of a node. Freeze will always freeze services which are still located on the node on shutdown, those services won’t be recovered by the HA manager. Failover will not mark the services as frozen and thus the services will get recovered to other nodes, if the shutdown node does not come up again quickly (< 1min). conditional chooses automatically depending on the type of shutdown, i.e., on a reboot the service will be frozen but on a poweroff the service will stay as is, and thus get recovered after about 2 minutes. Migrate will try to move all running services to another node when a reboot or shutdown was triggered. The poweroff process will only continue once no running services are located on the node anymore. If the node comes up again, the service will be moved back to the previously powered-off node, at least if no other migration, reloaction or recovery took place.

	
http_proxy: http://.*

	
Specify external http proxy which is used for downloads (example: http://username:password@host:port/)

	
keyboard: <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>

	
Default keybord layout for vnc server.

	
language: <ar | ca | da | de | en | es | eu | fa | fr | he | hr | it | ja | ka | kr | nb | nl | nn | pl | pt_BR | ru | sl | sv | tr | ukr | zh_CN | zh_TW>

	
Default GUI language.

	
mac_prefix: <string> (default = BC:24:11)

	
Prefix for the auto-generated MAC addresses of virtual guests. The default BC:24:11 is the Organizationally Unique Identifier (OUI) assigned by the IEEE to Proxmox Server Solutions GmbH for a MAC Address Block Large (MA-L). You’re allowed to use this in local networks, i.e., those not directly reachable by the public (e.g., in a LAN or NAT/Masquerading).

Note that when you run multiple cluster that (partially) share the networks of their virtual guests, it’s highly recommended that you extend the default MAC prefix, or generate a custom (valid) one, to reduce the chance of MAC collisions. For example, add a separate extra hexadecimal to the Proxmox OUI for each cluster, like BC:24:11:0 for the first, BC:24:11:1 for the second, and so on.
 Alternatively, you can also separate the networks of the guests logically, e.g., by using VLANs.
+
For publicly accessible guests it’s recommended that you get your own OUI from the IEEE registered or coordinate with your, or your hosting providers, network admins.
	
max_workers: <integer> (1 - N)

	
Defines how many workers (per node) are maximal started on actions like stopall VMs or task from the ha-manager.

	
migration: [type=]<secure|insecure> [,network=<CIDR>]

	
For cluster wide migration settings.

	
network=<CIDR>

	
CIDR of the (sub) network that is used for migration.

	
type=<insecure | secure> (default = secure)

	
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.

	
migration_unsecure: <boolean>

	
Migration is secure using SSH tunnel by default. For secure private networks you can disable it to speed up migration. Deprecated, use the migration property instead!

	
next-id: [lower=<integer>] [,upper=<integer>]

	
Control the range for the free VMID auto-selection pool.

	
lower=<integer> (default = 100)

	
Lower, inclusive boundary for free next-id API range.

	
upper=<integer> (default = 1000000)

	
Upper, exclusive boundary for free next-id API range.

	
notify: [fencing=<always|never>] [,package-updates=<auto|always|never>] [,replication=<always|never>] [,target-fencing=<TARGET>] [,target-package-updates=<TARGET>] [,target-replication=<TARGET>]

	
Cluster-wide notification settings.

	
fencing=<always | never> (default = always)

	
Control if notifications about node fencing should be sent.

	
always always send out notifications

	
never never send out notifications.
For production systems, turning off node fencing notifications is notrecommended!

	
package-updates=<always | auto | never> (default = auto)

	
Control how often the daily update job should send out notifications:

	
auto daily for systems with a valid subscription, as those are assumed to be production-ready and thus should know about pending updates.

	
always every update, if there are new pending updates.

	
never never send a notification for new pending updates.

	
replication=<always | never> (default = always)

	
Control if notifications for replication failures should be sent.

	
always always send out notifications

	
never never send out notifications.
For production systems, turning off replication notifications is notrecommended!

	
target-fencing=<TARGET>

	
Control where notifications about fenced cluster nodes should be sent to. Has to be the name of a notification target (endpoint or notification group). If the target-fencing parameter is not set, the system will send mails to root via a sendmail notification endpoint.

	
target-package-updates=<TARGET>

	
Control where notifications about available updates should be sent to. Has to be the name of a notification target (endpoint or notification group). If the target-package-updates parameter is not set, the system will send mails to root via a sendmail notification endpoint.

	
target-replication=<TARGET>

	
Control where notifications for failed storage replication jobs should be sent to. Has to be the name of a notification target (endpoint or notification group). If the target-replication parameter is not set, the system will send mails to root via a sendmail notification endpoint.

	
registered-tags: <tag>[;<tag>...]

	
A list of tags that require a Sys.Modify on / to set and delete. Tags set here that are also in user-tag-access also require Sys.Modify.

	
tag-style: [case-sensitive=<1|0>] [,color-map=<tag>:<hex-color>[:<hex-color-for-text>][;<tag>=...]] [,ordering=<config|alphabetical>] [,shape=<enum>]

	
Tag style options.

	
case-sensitive=<boolean> (default = 0)

	
Controls if filtering for unique tags on update should check case-sensitive.

	
color-map=<tag>:<hex-color>[:<hex-color-for-text>][;<tag>=...]

	
Manual color mapping for tags (semicolon separated).

	
ordering=<alphabetical | config> (default = alphabetical)

	
Controls the sorting of the tags in the web-interface and the API update.

	
shape=<circle | dense | full | none> (default = circle)

	
Tag shape for the web ui tree. full draws the full tag. circle draws only a circle with the background color. dense only draws a small rectancle (useful when many tags are assigned to each guest).none disables showing the tags.

	
u2f: [appid=<APPID>] [,origin=<URL>]

	
u2f

	
appid=<APPID>

	
U2F AppId URL override. Defaults to the origin.

	
origin=<URL>

	
U2F Origin override. Mostly useful for single nodes with a single URL.

	
user-tag-access: [user-allow=<enum>] [,user-allow-list=<tag>[;<tag>...]]

	
Privilege options for user-settable tags

	
user-allow=<existing | free | list | none> (default = free)

	
Controls which tags can be set or deleted on resources a user controls (such as guests). Users with the Sys.Modify privilege on / are alwaysunrestricted.

	
none no tags are usable.

	
list tags from user-allow-list are usable.

	
existing like list, but already existing tags of resources are also usable.

	
free no tag restrictions.

	
user-allow-list=<tag>[;<tag>...]

	
List of tags users are allowed to set and delete (semicolon separated) for user-allow values list and existing.

	
webauthn: [allow-subdomains=<1|0>] [,id=<DOMAINNAME>] [,origin=<URL>] [,rp=<RELYING_PARTY>]

	
webauthn configuration

	
allow-subdomains=<boolean> (default = 1)

	
Whether to allow the origin to be a subdomain, rather than the exact URL.

	
id=<DOMAINNAME>

	
Relying party ID. Must be the domain name without protocol, port or location. Changing this will break existing credentials.

	
origin=<URL>

	
Site origin. Must be a https:// URL (or http://localhost). Should contain the address users type in their browsers to access the web interface. Changing this may break existing credentials.

	
rp=<RELYING_PARTY>

	
Relying party name. Any text identifier. Changing this may break existing credentials.

Appendix D. Calendar Events

D.1. Schedule Format

Proxmox VE has a very flexible scheduling configuration. It is based on the systemd
time calendar event format.[58]
Calendar events may be used to refer to one or more points in time in a
single expression.
Such a calendar event uses the following format:
[WEEKDAY] [[YEARS-]MONTHS-DAYS] [HOURS:MINUTES[:SECONDS]]
This format allows you to configure a set of days on which the job should run.
You can also set one or more start times. It tells the replication scheduler
the moments in time when a job should start.
With this information we, can create a job which runs every workday at 10
PM: 'mon,tue,wed,thu,fri 22' which could be abbreviated to: 'mon..fri
22', most reasonable schedules can be written quite intuitive this way.
Note
Hours are formatted in 24-hour format.

To allow a convenient and shorter configuration, one or more repeat times per
guest can be set. They indicate that replications are done on the start-time(s)
itself and the start-time(s) plus all multiples of the repetition value. If
you want to start replication at 8 AM and repeat it every 15 minutes until
9 AM you would use: '8:00/15'
Here you see that if no hour separation (:), is used the value gets
interpreted as minute. If such a separation is used, the value on the left
denotes the hour(s), and the value on the right denotes the minute(s).
Further, you can use * to match all possible values.
To get additional ideas look at
more Examples below.

[58] see man 7 systemd.time for more information

D.2. Detailed Specification

	
weekdays

	
Days are specified with an abbreviated English version: sun, mon,
tue, wed, thu, fri and sat. You may use multiple days as a comma-separated
list. A range of days can also be set by specifying the start and end day
separated by “..”, for example mon..fri. These formats can be mixed.
If omitted '*' is assumed.

	
time-format

	
A time format consists of hours and minutes interval lists.
Hours and minutes are separated by ':'. Both hour and minute can be list
and ranges of values, using the same format as days.
First are hours, then minutes. Hours can be omitted if not needed. In this
case '*' is assumed for the value of hours.
The valid range for values is 0-23 for hours and 0-59 for minutes.

D.2.1. Examples:

There are some special values that have a specific meaning:
Table D.1. Special Values
	Value 	Syntax
	minutely
	--* *:*:00

	hourly
	--* *:00:00

	daily
	--* 00:00:00

	weekly
	mon *-*-* 00:00:00

	monthly
	--01 00:00:00

	yearly or annually
	*-01-01 00:00:00

	quarterly
	*-01,04,07,10-01 00:00:00

	semiannually or semi-annually
	*-01,07-01 00:00:00

Table D.2. Schedule Examples
	Schedule String 	Alternative 	Meaning
	mon,tue,wed,thu,fri
	mon..fri
	Every working day at 0:00

	sat,sun
	sat..sun
	Only on weekends at 0:00

	mon,wed,fri
	— 
	Only on Monday, Wednesday and Friday at 0:00

	12:05
	12:05
	Every day at 12:05 PM

	*/5
	0/5
	Every five minutes

	mon..wed 30/10
	mon,tue,wed 30/10
	Monday, Tuesday, Wednesday 30, 40 and 50 minutes after every full hour

	mon..fri 8..17,22:0/15
	— 
	Every working day every 15 minutes between 8 AM and 6 PM and between 10 PM and 11 PM

	fri 12..13:5/20
	fri 12,13:5/20
	Friday at 12:05, 12:25, 12:45, 13:05, 13:25 and 13:45

	12,14,16,18,20,22:5
	12/2:5
	Every day starting at 12:05 until 22:05, every 2 hours

	*
	*/1
	Every minute (minimum interval)

	*-05
	— 
	On the 5th day of every Month

	Sat *-1..7 15:00
	— 
	First Saturday each Month at 15:00

	2015-10-21
	— 
	21st October 2015 at 00:00

Appendix E. QEMU vCPU List

E.1. Introduction

This is a list of AMD and Intel x86-64/amd64 CPU types as defined in QEMU,
going back to 2007.

E.2. Intel CPU Types

Intel processors
	
Nahelem : 1st generation of the Intel Core processor

	
Nahelem-IBRS (v2) : add Spectre v1 protection (+spec-ctrl)

	
Westmere : 1st generation of the Intel Core processor (Xeon E7-)

	
Westmere-IBRS (v2) : add Spectre v1 protection (+spec-ctrl)

	
SandyBridge : 2nd generation of the Intel Core processor

	
SandyBridge-IBRS (v2) : add Spectre v1 protection (+spec-ctrl)

	
IvyBridge : 3rd generation of the Intel Core processor

	
IvyBridge-IBRS (v2): add Spectre v1 protection (+spec-ctrl)

	
Haswell : 4th generation of the Intel Core processor

	
Haswell-noTSX (v2) : disable TSX (-hle, -rtm)

	
Haswell-IBRS (v3) : re-add TSX, add Spectre v1 protection (+hle, +rtm,
+spec-ctrl)

	
Haswell-noTSX-IBRS (v4) : disable TSX (-hle, -rtm)

	
Broadwell: 5th generation of the Intel Core processor

	
Skylake: 1st generation Xeon Scalable server processors

	
Skylake-IBRS (v2) : add Spectre v1 protection, disable CLFLUSHOPT
(+spec-ctrl, -clflushopt)

	
Skylake-noTSX-IBRS (v3) : disable TSX (-hle, -rtm)

	
Skylake-v4: add EPT switching (+vmx-eptp-switching)

	
Cascadelake: 2nd generation Xeon Scalable processor

	
Cascadelake-v2 : add arch_capabilities msr (+arch-capabilities,
+rdctl-no, +ibrs-all, +skip-l1dfl-vmentry, +mds-no)

	
Cascadelake-v3 : disable TSX (-hle, -rtm)

	
Cascadelake-v4 : add EPT switching (+vmx-eptp-switching)

	
Cascadelake-v5 : add XSAVES (+xsaves, +vmx-xsaves)

	
Cooperlake : 3rd generation Xeon Scalable processors for 4 & 8 sockets servers

	
Cooperlake-v2 : add XSAVES (+xsaves, +vmx-xsaves)

	
Icelake: 3rd generation Xeon Scalable server processors

	
Icelake-v2 : disable TSX (-hle, -rtm)

	
Icelake-v3 : add arch_capabilities msr (+arch-capabilities, +rdctl-no,
+ibrs-all, +skip-l1dfl-vmentry, +mds-no, +pschange-mc-no, +taa-no)

	
Icelake-v4 : add missing flags (+sha-ni, +avx512ifma, +rdpid, +fsrm,
+vmx-rdseed-exit, +vmx-pml, +vmx-eptp-switching)

	
Icelake-v5 : add XSAVES (+xsaves, +vmx-xsaves)

	
Icelake-v6 : add "5-level EPT" (+vmx-page-walk-5)

	
SapphireRapids : 4th generation Xeon Scalable server processors

E.3. AMD CPU Types

AMD processors
	
Opteron_G3 : K10

	
Opteron_G4 : Bulldozer

	
Opteron_G5 : Piledriver

	
EPYC : 1st generation of Zen processors

	
EPYC-IBPB (v2) : add Spectre v1 protection (+ibpb)

	
EPYC-v3 : add missing flags (+perfctr-core, +clzero, +xsaveerptr,
+xsaves)

	
EPYC-Rome : 2nd generation of Zen processors

	
EPYC-Rome-v2 : add Spectre v2, v4 protection (+ibrs, +amd-ssbd)

	
EPYC-Milan : 3rd generation of Zen processors

	
EPYC-Milan-v2 : add missing flags (+vaes, +vpclmulqdq,
+stibp-always-on, +amd-psfd, +no-nested-data-bp,
+lfence-always-serializing, +null-sel-clr-base)

Appendix F. Firewall Macro Definitions

	

Amanda

	

Amanda Backup

	Action	proto	dport	sport
	PARAM
	udp
	10080
	

	PARAM
	tcp
	10080
	

	

Auth

	

Auth (identd) traffic

	Action	proto	dport	sport
	PARAM
	tcp
	113
	

	

BGP

	

Border Gateway Protocol traffic

	Action	proto	dport	sport
	PARAM
	tcp
	179
	

	

BitTorrent

	

BitTorrent traffic for BitTorrent 3.1 and earlier

	Action	proto	dport	sport
	PARAM
	tcp
	6881:6889
	

	PARAM
	udp
	6881
	

	

BitTorrent32

	

BitTorrent traffic for BitTorrent 3.2 and later

	Action	proto	dport	sport
	PARAM
	tcp
	6881:6999
	

	PARAM
	udp
	6881
	

	

CVS

	

Concurrent Versions System pserver traffic

	Action	proto	dport	sport
	PARAM
	tcp
	2401
	

	

Ceph

	

Ceph Storage Cluster traffic (Ceph Monitors, OSD & MDS Daemons)

	Action	proto	dport	sport
	PARAM
	tcp
	6789
	

	PARAM
	tcp
	3300
	

	PARAM
	tcp
	6800:7300
	

	

Citrix

	

Citrix/ICA traffic (ICA, ICA Browser, CGP)

	Action	proto	dport	sport
	PARAM
	tcp
	1494
	

	PARAM
	udp
	1604
	

	PARAM
	tcp
	2598
	

	

DAAP

	

Digital Audio Access Protocol traffic (iTunes, Rythmbox daemons)

	Action	proto	dport	sport
	PARAM
	tcp
	3689
	

	PARAM
	udp
	3689
	

	

DCC

	

Distributed Checksum Clearinghouse spam filtering mechanism

	Action	proto	dport	sport
	PARAM
	tcp
	6277
	

	

DHCPfwd

	

Forwarded DHCP traffic

	Action	proto	dport	sport
	PARAM
	udp
	67:68
	67:68

	

DHCPv6

	

DHCPv6 traffic

	Action	proto	dport	sport
	PARAM
	udp
	546:547
	546:547

	

DNS

	

Domain Name System traffic (upd and tcp)

	Action	proto	dport	sport
	PARAM
	udp
	53
	

	PARAM
	tcp
	53
	

	

Distcc

	

Distributed Compiler service

	Action	proto	dport	sport
	PARAM
	tcp
	3632
	

	

FTP

	

File Transfer Protocol

	Action	proto	dport	sport
	PARAM
	tcp
	21
	

	

Finger

	

Finger protocol (RFC 742)

	Action	proto	dport	sport
	PARAM
	tcp
	79
	

	

GNUnet

	

GNUnet secure peer-to-peer networking traffic

	Action	proto	dport	sport
	PARAM
	tcp
	2086
	

	PARAM
	udp
	2086
	

	PARAM
	tcp
	1080
	

	PARAM
	udp
	1080
	

	

GRE

	

Generic Routing Encapsulation tunneling protocol

	Action	proto	dport	sport
	PARAM
	47
	
	

	

Git

	

Git distributed revision control traffic

	Action	proto	dport	sport
	PARAM
	tcp
	9418
	

	

HKP

	

OpenPGP HTTP key server protocol traffic

	Action	proto	dport	sport
	PARAM
	tcp
	11371
	

	

HTTP

	

Hypertext Transfer Protocol (WWW)

	Action	proto	dport	sport
	PARAM
	tcp
	80
	

	

HTTPS

	

Hypertext Transfer Protocol (WWW) over SSL

	Action	proto	dport	sport
	PARAM
	tcp
	443
	

	

ICPV2

	

Internet Cache Protocol V2 (Squid) traffic

	Action	proto	dport	sport
	PARAM
	udp
	3130
	

	

ICQ

	

AOL Instant Messenger traffic

	Action	proto	dport	sport
	PARAM
	tcp
	5190
	

	

IMAP

	

Internet Message Access Protocol

	Action	proto	dport	sport
	PARAM
	tcp
	143
	

	

IMAPS

	

Internet Message Access Protocol over SSL

	Action	proto	dport	sport
	PARAM
	tcp
	993
	

	

IPIP

	

IPIP capsulation traffic

	Action	proto	dport	sport
	PARAM
	94
	
	

	

IPsec

	

IPsec traffic

	Action	proto	dport	sport
	PARAM
	udp
	500
	500

	PARAM
	50
	
	

	

IPsecah

	

IPsec authentication (AH) traffic

	Action	proto	dport	sport
	PARAM
	udp
	500
	500

	PARAM
	51
	
	

	

IPsecnat

	

IPsec traffic and Nat-Traversal

	Action	proto	dport	sport
	PARAM
	udp
	500
	

	PARAM
	udp
	4500
	

	PARAM
	50
	
	

	

IRC

	

Internet Relay Chat traffic

	Action	proto	dport	sport
	PARAM
	tcp
	6667
	

	

Jetdirect

	

HP Jetdirect printing

	Action	proto	dport	sport
	PARAM
	tcp
	9100
	

	

L2TP

	

Layer 2 Tunneling Protocol traffic

	Action	proto	dport	sport
	PARAM
	udp
	1701
	

	

LDAP

	

Lightweight Directory Access Protocol traffic

	Action	proto	dport	sport
	PARAM
	tcp
	389
	

	

LDAPS

	

Secure Lightweight Directory Access Protocol traffic

	Action	proto	dport	sport
	PARAM
	tcp
	636
	

	

MDNS

	

Multicast DNS

	Action	proto	dport	sport
	PARAM
	udp
	5353
	

	

MSNP

	

Microsoft Notification Protocol

	Action	proto	dport	sport
	PARAM
	tcp
	1863
	

	

MSSQL

	

Microsoft SQL Server

	Action	proto	dport	sport
	PARAM
	tcp
	1433
	

	

Mail

	

Mail traffic (SMTP, SMTPS, Submission)

	Action	proto	dport	sport
	PARAM
	tcp
	25
	

	PARAM
	tcp
	465
	

	PARAM
	tcp
	587
	

	

Munin

	

Munin networked resource monitoring traffic

	Action	proto	dport	sport
	PARAM
	tcp
	4949
	

	

MySQL

	

MySQL server

	Action	proto	dport	sport
	PARAM
	tcp
	3306
	

	

NNTP

	

NNTP traffic (Usenet).

	Action	proto	dport	sport
	PARAM
	tcp
	119
	

	

NNTPS

	

Encrypted NNTP traffic (Usenet)

	Action	proto	dport	sport
	PARAM
	tcp
	563
	

	

NTP

	

Network Time Protocol (ntpd)

	Action	proto	dport	sport
	PARAM
	udp
	123
	

	

NeighborDiscovery

	

IPv6 neighbor solicitation, neighbor and router advertisement

	Action	proto	dport	sport
	PARAM
	icmpv6
	router-solicitation
	

	PARAM
	icmpv6
	router-advertisement
	

	PARAM
	icmpv6
	neighbor-solicitation
	

	PARAM
	icmpv6
	neighbor-advertisement
	

	

OSPF

	

OSPF multicast traffic

	Action	proto	dport	sport
	PARAM
	89
	
	

	

OpenVPN

	

OpenVPN traffic

	Action	proto	dport	sport
	PARAM
	udp
	1194
	

	

PCA

	

Symantec PCAnywere (tm)

	Action	proto	dport	sport
	PARAM
	udp
	5632
	

	PARAM
	tcp
	5631
	

	

PMG

	

Proxmox Mail Gateway web interface

	Action	proto	dport	sport
	PARAM
	tcp
	8006
	

	

POP3

	

POP3 traffic

	Action	proto	dport	sport
	PARAM
	tcp
	110
	

	

POP3S

	

Encrypted POP3 traffic

	Action	proto	dport	sport
	PARAM
	tcp
	995
	

	

PPtP

	

Point-to-Point Tunneling Protocol

	Action	proto	dport	sport
	PARAM
	47
	
	

	PARAM
	tcp
	1723
	

	

Ping

	

ICMP echo request

	Action	proto	dport	sport
	PARAM
	icmp
	echo-request
	

	

PostgreSQL

	

PostgreSQL server

	Action	proto	dport	sport
	PARAM
	tcp
	5432
	

	

Printer

	

Line Printer protocol printing

	Action	proto	dport	sport
	PARAM
	tcp
	515
	

	

RDP

	

Microsoft Remote Desktop Protocol traffic

	Action	proto	dport	sport
	PARAM
	tcp
	3389
	

	

RIP

	

Routing Information Protocol (bidirectional)

	Action	proto	dport	sport
	PARAM
	udp
	520
	

	

RNDC

	

BIND remote management protocol

	Action	proto	dport	sport
	PARAM
	tcp
	953
	

	

Razor

	

Razor Antispam System

	Action	proto	dport	sport
	PARAM
	tcp
	2703
	

	

Rdate

	

Remote time retrieval (rdate)

	Action	proto	dport	sport
	PARAM
	tcp
	37
	

	

Rsync

	

Rsync server

	Action	proto	dport	sport
	PARAM
	tcp
	873
	

	

SANE

	

SANE network scanning

	Action	proto	dport	sport
	PARAM
	tcp
	6566
	

	

SMB

	

Microsoft SMB traffic

	Action	proto	dport	sport
	PARAM
	udp
	135,445
	

	PARAM
	udp
	137:139
	

	PARAM
	udp
	1024:65535
	137

	PARAM
	tcp
	135,139,445
	

	

SMBswat

	

Samba Web Administration Tool

	Action	proto	dport	sport
	PARAM
	tcp
	901
	

	

SMTP

	

Simple Mail Transfer Protocol

	Action	proto	dport	sport
	PARAM
	tcp
	25
	

	

SMTPS

	

Encrypted Simple Mail Transfer Protocol

	Action	proto	dport	sport
	PARAM
	tcp
	465
	

	

SNMP

	

Simple Network Management Protocol

	Action	proto	dport	sport
	PARAM
	udp
	161:162
	

	PARAM
	tcp
	161
	

	

SPAMD

	

Spam Assassin SPAMD traffic

	Action	proto	dport	sport
	PARAM
	tcp
	783
	

	

SPICEproxy

	

Proxmox VE SPICE display proxy traffic

	Action	proto	dport	sport
	PARAM
	tcp
	3128
	

	

SSH

	

Secure shell traffic

	Action	proto	dport	sport
	PARAM
	tcp
	22
	

	

SVN

	

Subversion server (svnserve)

	Action	proto	dport	sport
	PARAM
	tcp
	3690
	

	

SixXS

	

SixXS IPv6 Deployment and Tunnel Broker

	Action	proto	dport	sport
	PARAM
	tcp
	3874
	

	PARAM
	udp
	3740
	

	PARAM
	41
	
	

	PARAM
	udp
	5072,8374
	

	

Squid

	

Squid web proxy traffic

	Action	proto	dport	sport
	PARAM
	tcp
	3128
	

	

Submission

	

Mail message submission traffic

	Action	proto	dport	sport
	PARAM
	tcp
	587
	

	

Syslog

	

Syslog protocol (RFC 5424) traffic

	Action	proto	dport	sport
	PARAM
	udp
	514
	

	PARAM
	tcp
	514
	

	

TFTP

	

Trivial File Transfer Protocol traffic

	Action	proto	dport	sport
	PARAM
	udp
	69
	

	

Telnet

	

Telnet traffic

	Action	proto	dport	sport
	PARAM
	tcp
	23
	

	

Telnets

	

Telnet over SSL

	Action	proto	dport	sport
	PARAM
	tcp
	992
	

	

Time

	

RFC 868 Time protocol

	Action	proto	dport	sport
	PARAM
	tcp
	37
	

	

Trcrt

	

Traceroute (for up to 30 hops) traffic

	Action	proto	dport	sport
	PARAM
	udp
	33434:33524
	

	PARAM
	icmp
	echo-request
	

	

VNC

	

VNC traffic for VNC display’s 0 - 99

	Action	proto	dport	sport
	PARAM
	tcp
	5900:5999
	

	

VNCL

	

VNC traffic from Vncservers to Vncviewers in listen mode

	Action	proto	dport	sport
	PARAM
	tcp
	5500
	

	

Web

	

WWW traffic (HTTP and HTTPS)

	Action	proto	dport	sport
	PARAM
	tcp
	80
	

	PARAM
	tcp
	443
	

	

Webcache

	

Web Cache/Proxy traffic (port 8080)

	Action	proto	dport	sport
	PARAM
	tcp
	8080
	

	

Webmin

	

Webmin traffic

	Action	proto	dport	sport
	PARAM
	tcp
	10000
	

	

Whois

	

Whois (nicname, RFC 3912) traffic

	Action	proto	dport	sport
	PARAM
	tcp
	43
	

Appendix G. Markdown Primer

	 	Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you
to write using an easy-to-read, easy-to-write plain text format, then convert
it to structurally valid XHTML (or HTML).
	
	 	--
John Gruber
https://daringfireball.net/projects/markdown/

The Proxmox VE web interface has support for using Markdown to rendering rich text
formatting in node and virtual guest notes.
Proxmox VE supports CommonMark with most extensions of GFM (GitHub Flavoured Markdown),
like tables or task-lists.

G.1. Markdown Basics

Note that we only describe the basics here, please search the web for more
extensive resources, for example on https://www.markdownguide.org/
G.1.1. Headings

This is a Heading h1
This is a Heading h2
This is a Heading h5

G.1.2. Emphasis

Use *text* or _text_ for emphasis.
Use **text** or __text__ for bold, heavy-weight text.
Combinations are also possible, for example:
You **can** combine them

G.1.3. Links

You can use automatic detection of links, for example,
https://forum.proxmox.com/ would transform it into a clickable link.
You can also control the link text, for example:
Now, [the part in brackets will be the link text](https://forum.proxmox.com/).

G.1.4. Lists

Unordered Lists

Use * or - for unordered lists, for example:
* Item 1
* Item 2
* Item 2a
* Item 2b
Adding an indentation can be used to created nested lists.

Ordered Lists

1. Item 1
1. Item 2
1. Item 3
 1. Item 3a
 1. Item 3b
Note
The integer of ordered lists does not need to be correct, they will be numbered automatically.

Task Lists

Task list use a empty box [] for unfinished tasks and a box with an X for finished tasks.
For example:
- [X] First task already done!
- [X] Second one too
- [] This one is still to-do
- [] So is this one

G.1.5. Tables

Tables use the pipe symbol | to separate columns, and - to separate the
table header from the table body, in that separation one can also set the text
alignment, making one column left-, center-, or right-aligned.
Left columns	Right columns	Some	More	Cols.	Centering Works Too
left foo	right foo	First	Row	Here	>center<
left bar	right bar	Second	Row	Here	12345
left baz	right baz	Third	Row	Here	Test
left zab	right zab	Fourth	Row	Here	☁️☁️☁️
left rab	right rab	And	Last	Here	The End
Note that you do not need to align the columns nicely with white space, but that makes
editing tables easier.

G.1.6. Block Quotes

You can enter block quotes by prefixing a line with >, similar as in plain-text emails.
> Markdown is a lightweight markup language with plain-text-formatting syntax,
> created in 2004 by John Gruber with Aaron Swartz.
>
>> Markdown is often used to format readme files, for writing messages in online discussion forums,
>> and to create rich text using a plain text editor.

G.1.7. Code and Snippets

You can use backticks to avoid processing for a few word or paragraphs. That is useful for
avoiding that a code or configuration hunk gets mistakenly interpreted as markdown.
Inline code

Surrounding part of a line with single backticks allows to write code inline,
for examples:
This hosts IP address is `10.0.0.1`.

Whole blocks of code

For code blocks spanning several lines you can use triple-backticks to start
and end such a block, for example:
```
# This is the network config I want to remember here
auto vmbr2
iface vmbr2 inet static
        address 10.0.0.1/24
        bridge-ports ens20
        bridge-stp off
        bridge-fd 0
        bridge-vlan-aware yes
        bridge-vids 2-4094

```


Appendix H. GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE. The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS. This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
The "publisher" means any person or entity that distributes copies of
the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
2. VERBATIM COPYING. You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
3. COPYING IN QUANTITY. If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.
4. MODIFICATIONS. You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
	
Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.

	
List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.

	
State on the Title page the name of the publisher of the
 Modified Version, as the publisher.

	
Preserve all the copyright notices of the Document.

	
Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.

	
Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.

	
Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document’s license notice.

	
Include an unaltered copy of this License.

	
Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.

	
Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.

	
For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.

	
Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.

	
Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.

	
Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.

	
Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS. You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.
7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
8. TRANSLATION. Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
9. TERMINATION. You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.
11. RELICENSING. "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

OEBPS/images/screenshot/gui-ceph-log.png
X PROXMOX virual environment 5.0.33

Server View

£ Datacenter
B sumit
Bo sumi2
Bo sumiz

Node ‘sumi’

Q search

8 summay

> Shell

& System
= Network

DNS

Q
[}

Time

Syslog
Updates

© Firewall
a

@ Configuration
O Monitor

& osp

& Pools

= Log

5 Replication

Task History

® Subscription

Search

2017-10-23 09:49:32.166969 mon.sumiL mon 0 10.10.10 34678910 247
2017-10-23 09:49:38 215306 mon.sumiL mon. 10.10.10 34:678910 251
2017-10-23 09:49:38 216335 mon.sumiL mon.0 10.10.10 34:678910 252
2017-10-23 09:49:38 265776 mon.sumiL mon 0 10.10.10 34678910 253
2017-10-23 09:49:49 556034 mon.sumiL mon 0 10.10.10.34:678910 259
2017-10-23 09:49:52 250111 mon.sumiL mon 0 10.10.10.34:678910 269
2017-10-23 09:49:5 830536 mon.sumiL mon.0 10.10.10 34:678910 272
2017-10-23 09:49:55 830563 mon.sumiL mon 0 10.10.10 34678910 273
2017-10-23 09:50:52.248928 mon.sumiL mon.0 10.10.10 34:678910 274
2017-10-23 09:50:52.248983 mon.sumiL mon 0 10.10.10.34:678910 275,
2017-10-23 09:50:52.250262 mon.sumiL mon 0 10.10.10 34678910 276
2017-10-23 09:53:50 877957 mon.sumiL mon 0 10.10.10 34678910 1
2017-10-23 09:53:50.90534 1 mon.sumiL mon 0 10.10.10 34678910 2.
2017-10-23 09:53:50 911584 mon.sumiL mon 0 10.10.10 34678910 3
2017-10-23 09:53:50 918974 mon.sumiL mon 0 10.10.10 34678910 4
2017-10-23 09:53:50.99199 mon.sumiL mon 0 10.10.10 346789105
2017-10-23 09:53:51.032992 mon.sumiL mon 0 10.10.10 34678910 9
2017-10-23 09:54:30.027300 mon.sumiL mon 0 10.10.10 34678910 1
2017-10-23 09:54:30.052013 mon.sumiL mon 0 10.10.10 34678910 2.
2017-10-23 09:54:30.06.1673 mon.sumiLL mon 0 10.10.10 34678910 3
2017-10-23 09:54:30.067936 mon.sumiL mon 0 10.10.10 34678910 4
2017-10-23 09:54:30.125299 mon.sumiL mon 0 10.10.10 346789105

You e oget 3 @' @ © e

D Restart | O Shutdown > Shell Bulk Actions © Help
Gluster [WRN] Healh check faled: 1 0sds down (OSD_DOWN) -
Gluster [NF] Health check cleared: OSD_DOWN (was: Losds down)

cluster [NF] Custer is now heatiy

cluster [NF] 0505 10.10 10 36 680416536 boot.

cluster [WRN] Health check fallt to0 few PGS per OSD (10 < min 30) (TOO_FEW_FGS)

cluster [WRN] overall HEALTH_WARN 100 few PGs per OSD (14 < min 30)

cluster [NF] Health check cleared: TOO_FEW_PGS (was: 100 few PGs per OSD (24 < min 30))

cluster [NF] Custer is now healiny.

cluster [NF] mon 2 10.10 10 36678910

cluster [NF] mon 1.10.10 10 35678910

cluster [INF] overall HEALTH_OK

Gluster [NF] monsumi1. caling new morior elecion

cluster [NF] mon sumi 1690 won leader electon with quorum 0,12

cluster [NF] overall HEALTH_OK

cluster [NF] mon 2 10.10 10 36:6789/0

Gluster [NF] monmap e3: 3 mons at {sumi1=10.10.10.34 678910, sumi2=10.10. 10 35.678910,sumi3=10.10.10 36:678910)
cluster [NF] mon 1.10.10 10 35:6789/0

Gluster [NF] monsumi1. caling new morior elecion

cluster [NF] mon sumi 1690 won leader electon with quorum 0,12

cluster [NF] overall HEALTH_OK

cluster [NF] mon 2 10.10 10 36:6789/0

Gluster [NF] monmap e3: 3 mons at {sumi1=10.10.10.34 678910, sumi2=10.10. 10 35.678910,sumi3=10.10.10 36:678910)

2017-10-23 09:54:30.160747 mon.sumiL mon 0 10.10.10.34:678910 9 - cluster [NF] mon. 1 10.10.10 35:678910

2017-10-23 09:59:30.062068 mon.sumiL mon.0 10.10.10 34:678910 75
2017-10-23 09:59:30.062215 mon.sumiL mon.0 10.10.10 34:678910 76
2017-10-23 10:00:00.000132 mon.sumiL mon. 10.10.10 34:578910 77
2017-10-23 10:04:30.062378 mon.sumiL mon. 10.10.10 34:678910 78
2017-10-23 10:04:30.062469 mon.sumiL mon. 10.10.10 34:578910 79
2017-10-23 10:09:30.062524 mon.sumiL mon. 10.10.10 34:578910 80
2017-10-23 10:09:30.062578 mon.sumiL mon 0 10.10.10 34678910 81
2017-10-23 10:14:30.062650 mon.sumiL mon 0 10.10.10 34678910 82
2017-10-23 10:14:30.062750 mon.sumiL mon.0 10.10.10 34:678910 83
2017-10-23 10:15:30.06290L mon.sumiL mon 0 10.10.10 34678910 84
2017-10-23 10:19:30.062951 mon.sumiL mon. 10.10.10 34:678910 85
2017-10-23 10:24:30.062972 mon.sumiL mon.0 10.10.10 34:678910 86
2017-10-23 10:24:30.063027 mon.sumiL mon. 10.10.10 34:578910 87
2017-10-23 10:29:30.063104 mon.sumiL mon. 10.10.10 34:578910 88
2017-10-23 10:29:30.06317 L mon.sumiL mon. 10.10.10 34:678910 89
2017-10-23 10:34:30.06327 1 mon.sumiL mon. 10.10.10 34:578910 30
2017-10-23 10:34:30.063324 mon.sumiL mon 0 10.10.10 34678910 91
2017-10-23 10:39:30.063434 mon.sumiL mon 0 10.10.10 34678910 52
2017-10-23 10:39:30.063467 mon.sumiL mon. 10.10.10 34:678910 83
2017-10-23 10:44:30.063597 mon.sumiL mon 0 10.10.10 34678910 94
2017-10-23 10:44:30.063530 mon.sumiL mon. 10.10.10 34:578910 95
2017-10-23 10:49:30.063792 mon.sumiL mon. 10.10.10 34:578910 36
2017-10-23 10:49:30.063526 mon.sumiL mon. 10.10.10 34:578910 87
2017-10-23 10:54:30.063842 mon.sumiL mon. 10.10.10 34:678910 98
2017-10-23 10:54:30.063894 mon.sumiL mon.0 10.10.10 34:578910 89
2017-10-23 10:59:30.063972 mon.sumiL mon 0 10.10.10.34:678910 100
2017-10-23 10:59:30.064008 mon.sumiL mon. 10.10.10 34:678910 101
2017-10-23 1100:00.000123 mon.sumiL mon.0 10.10.10 34:678910 102
2017-10-23 1104:30.064161 mon.sumiL mon 0 10.10.10 34678910 103
2017-10-23 1104:30.064211 mon.sumiL mon.0 10.10.10 34:678910 104
2017-10-23 1109:30.064399 mon.sumiL mon. 10.10.10 34:678910 141
2017-10-23 1109:30.064452 mon.sumiL mon.0 10.10.10 34:678910 142
2017-10-23 11:14:30.064570 mon.sumiL mon 0 10.10.10 34678910 203
2017-10-23 11:14:30.064624 mon.sumiL mon.0 10.10.10 34:678910 204

cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36:6789/0
cluster [NF] overall HEALTH_OK
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 2 10.10 10 36:6789/0
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 2 10.10 10 36:6789/0
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 2 10.10 10 36:6789/0
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10.10 35:6789/0
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36:6789/0
cluster [NF] overall HEALTH_OK
cluster [NF] mon 1.10.10 10 35:6789/0
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36678910
cluster [NF] mon 1.10.10 10 35678910
cluster [NF] mon 2 10.10 10 36:6789/0

OEBPS/images/screenshot/gui-create-vm-network.png
Create: Virtual Machine ®
General 05 HardDisk CPU Memory A conm

(] No network device

Bridge vmbro v | moer VIMIO (paravirualized) v

VLAN Tag no VLAN C| WAC address: | auto

Firewall o

Discomect: [Rate imit p— s
(B/s)
Multiqueue T

© Help

OEBPS/images/screenshot/gui-my-settings.png
£+ My Settings ()

Webinfertace Sefings Xterm s Setings

Dashboard Storages: FontFamiy: | Default

O wame?] Font.Size Detautt °

[cepnts pre. = Letter Spacing: | Default o
Tocal

o [-2 Line Height Defautt T

[tocatm e

O coprts = et Save

1 focal ove2 o

Saved User name none.

Clear User name.

Layout

Reset Layout

© Help

OEBPS/images/screenshot/gui-datacenter-realm-add-ldap-sync-options.png
Add: LDAP Server

General
Bind User: cn=readonly dc=example,dc
Bind Password: o .

E-Mail attribute: mail

Groupname att

Default Sync Options
Scope: Users and Groups -
Fult Yes -

© Help

User classes:
Group classes:
User Fier:

Group Filter

Enable new users:

Purge:

Yes (Default)

Yes

OEBPS/images/screenshot/gui-create-ct-network.png
Create: LXC Container

General Template Root Disk

Name (Le. etho)
MAC adress:
Bridge
VLANTag

Rate limit
(MB/s)

Firewall

© Help

etho
auto
vmbro

no VLAN
unlimited

o

cPU

vemory [JE

T ons

IPus: @ Static (O DHCP
IPUCIOR
v cateway (Pus)
o Pue: @Static ODHCP O SLAAC

A1 IPU/CIDR:

<

Gateway (IPvE)

OEBPS/images/screenshot/gui-node-ceph-install-wizard-step0.png
setup ®

intataton

Ceph?

“Ceph is a unified, distributed storage system, designed for excellent performance, refiabilty, and
scalabilty."

Cephis currently not installed on this node. This wizard will guide you through the installation. Click on the next
bution below to begin. After the iniial installation, the wizard willoffer to create an initial configuration. This
configuration step is only needed once per cluster and will be skipped if a config is already present

Before starting the instalation, please take a look at our documentation, by clicking the help button below. If you want
to gain deeper knowledge about Ceph, visit ceph.com.

Cephin the cluster Newest ceph version in cluster is Octopus (15.2.11)
Ceph version to install octopus (15.2)
© Hep

Advanced (/]

OEBPS/images/screenshot/gui-datacenter-metric-server-influxdb.png
Create: InfluxDB ()

Name. infuxa-es] Enablec =

Server: 192.168.0.60 Port: 8089

o

© Hep

OEBPS/images/screenshot/gui-cloudinit-config.png
Vitual Machine 8000 (CloudinitBase) on node ‘demohostl’ B Start () Shu

& summay

Cansole

& Hardware
& Cloud-nit

@ options

Task History

® Monitor

Backup
5 Replication

D snapshots

e

Firewall

& Permissions

Rem Edit

& User
o Password

@ DNS domain

@ DN servers

@ SSH public key
=P Config (neto)

n] Migrate > Console More
Regenerate Image

Default
none

use host settings

use host settings

Ssh1sa AAAABINZaC Lyc2EAAAADAQABAAABAQCH/SDI2ZNHEeeXwoex

0.0.10.123/24,gw=10.0.10.1

OEBPS/images/screenshot/gui-datacenter-notification-smtp.png
Add: SMTP ()

Endpoint Name: | smtp-examplef]
Enable: =

Server: mail.example.org Authenticate: %]

Encrypton: s | usemame pre-mail

port Detautt (465) 2| password Pr—

From Address pre-mai@example.org

Recipient(s): roct@pam x v
Addiional

a i
S aamin@example.org

Comment: Send notifications via extemal SMTP relay

© Help Advanced []

OEBPS/images/screenshot/gui-create-ct-cpu.png
Create: LXC Container ®

General Template Root Disk Memory Network DNS Confiim

Cores. 2 <
CPU limit unlimited <] cPuunits 1024 <

CoHep

OEBPS/images/screenshot/storage-pbs-encryption-with-key.png
Edit: Proxmox Backup Server

General Backup Retention

Encryption Key: @ Active - Fingerprint 4d:6d:97

[] Edit existing encryption key (dangerousl)
Keep encryption key
Delete existing encryption key
Auto-generate a client encryption ke

Upload an existing client encryption key

OEBPS/images/screenshot/gui-ceph-pool-create.png
Create: Ceph Pool

size 3 2| Addas storage I
Min. Size: 2 2] Tagetraio: |00 T
Crush Rule: replicated_ssd v Target size: 0.l ee
401 PGs: 128 2| Target Ratio takes precedence.
Min. # of PGs: 0 <
) roverces 2 (N

OEBPS/images/screenshot/gui-import-wizard-advanced.png
Import Guest - esxi-7.0:ha-datacenter/tom-nasi/deb-mediawiki/deb-mediawiki.vmx @

General Resulting Config
Disks:

Use | Disk T Source Size Storage Format

M scsi0 deb-mediawiki... 32.00 GIB FromDefaut v | Raw disk image

SCSI Gontroller: | VirtiO SCSI single v

CDIDVD Drives:

Use | SlotT Storage 150

[sata0 none v || none v
Network Interfaces:

Use | IDT MAC address Model Bridge

4 neto auto VirtlO (paravirtualize | From Default v

[Unique MAC addresses

Import

OEBPS/images/screenshot/gui-datacenter-mapping-pci-edit.png
Create: PCI mapping

ane I —— T

Mapping on Node: | pve-ceph-01

O/ o1 0. Vendor Device Me.

[000000000 0 Intel Corporation 82G33/G3L/P35/P31 Express DRAM Controller No -
[] 0000:00:01.0 1 No

[00000012 2 Intel Corporation Pass through al functions as one device No

[000000120 2 Intel Corporation 828011 (ICHO Family) USB UHCI Controller #4 No

[000000:1a1 2 Intel Corporation 828011 (ICHO Family) USB UHCI Controller #5 No

[000000122 2 Intel Corporation 828011 (ICHO Family) USB UHCI Controller #6 No

[000000127 2 Intel Corporation 828011 (ICHO Family) USB2 EHCI Conroller #2 No

[0000:00:10.0 3 Intel Corporation 828011 (ICHO Family) HD Audio Controller No

[000000:1c 4 RedHaiInc. Pass through al functions as one device No

[000000:1c.0 4 RedHatInc. QEMU PCle Root port No

il 0000:001c 1 5 Red Hat Inc. OEMII DCle Root nort No A

Comment
o

OEBPS/images/screenshot/gui-node-ceph-install-wizard-step2.png
Info.
Ceph cluster configuration: First Ceph monitor:
Public Network [107030 00 ' Monitornode: | prod2
IPICIDR:
‘Additional monitors are recommended. They can be
Cluster Network |'s. o o pupiic Network | created atany time in the Monitor tab.
IPICIDR:
Number of B x
replicas: ~
Minimum B z
replicas:

© Help Advanced [[

OEBPS/images/screenshot/gui-import-wizard-general.png
Import Guest - esxi-7.0:ha-datacenter/tom-nasi/deb-mediawiki/deb-mediawiki.vmx

Advanced Resulting Gonfig

VMID; 100
Sockets: 1
Cores: 2

Memory (MiB): | 1024

Defautt Storage: | ¢p

Live Import [m)

Warnings

o

o

Name:
GPU Type:
Total cores:
05 Type:

Version:

Defautt Bridge:

deb-mediawiki

x86-64-v3

2

Linux

6.x- 2.6 Kemel

vnett

= CD-ROM images cannot get imported, if required you can reconfigure the ‘sata0' drive in the ‘Advanced tab.

Import

OEBPS/images/screenshot/gui-datacenter-options-crs.png
Edit: Cluster Resource Scheduling ®

HA Scheduling: Static Load v

Rebalance on Start: [7] Use GRS to select the least loaded node when
starting an HA service

OEBPS/images/screenshot/gui-qemu-edit-bootorder.png
Edit: Boot Order

Enabled
1 “
2 “
[m]

Drag and drop to reorder

Device
& scsio
= neto

& scsit

Description
local:99999/m-99999.lskc 0 ize=80G
Viio=52:D0-E8:6D:67:67,bridge=vmbr0
215:99999/Vm-99999-disk-1,size=40G

[ok | resat]

OEBPS/images/screenshot/gui-datacenter-resource-mappings.png
Datacenter

Q searcn
8 summary
O Notes
£ Cluster
@ ceph

© Options
£ storage

Backup
3 Repiication
o' Permissions
& users
& APITokens
@, Two Factor
& Groups
® Pools
Roles
@ Reaims
@ HA
* ACME
U Firewal
Ll Metric Server
[Resource Mappings

© Support

PCI Devices
Add

IDNode/Path |
S0 Ne
< B pve-cepn-o1
0000:06:12.0

S precepnoz
0000:06:12.0

USB Devices
Add

IDINode/Vendor&Device |
S0y sTiek
< B pve-cepn-o1
& 0627:0001

S precepnoz
+&% 0627:0001

Actions

osm
Sa

w
Sa

w

Actions

osm
Sa

w
Sa

w

Vendor/De.

1a14:1000

1a14:1000

Patn

11

Subsystem... | IOMMU gr.
1a14:0001 °
1a14:0001 °

Status

© Mapping matches host data.

© Mapping matches host data.

Status

© Mapping matches host data.

© Mapping matches host data.

Comment

Comment

© Hep

OEBPS/images/screenshot/gui-qemu-edit-start-order.png
Edit: Start/Shutdown order ()

Shutdown timeout: | default

OEBPS/images/screenshot/gui-cluster-join-information.png
Cluster Join Information ()

Copy the Join Information here and use it on the node you want to add.
1P Address 192.168.26.225

Fingerprint 56:AB:A8:DD:4E:F4:85:FB:BDICY:93:55:1C:C2:6B:D7:88:54:86:05:89:18:02:9A:25:0D:B5:39:D7-FE7C:D6

Join Information: | eyIpcEFKZHIIC3MIOIIXOTIUMTYALI2LjlyNSisimZpbmdicnByaW50ljoiNTY6QUIBQTGEREQBNEUBRIQE0DU
6RKIGQKQBQZKBOTMENTUBMUMEQZIBNKIGRDCGODGENTQBQ)Y6MDUBQKEMTgEMDIEOUEEMIUEMEQEQ)
UBMzKERDCERKUBNOMBRDYILCJyaWsnX2FKZHIIOISIMTkyLIE20CAyNi4yM]UILG51bGxdLCI0b3RIDSI6eyJ)

VA X 2SRRI O ek WA WYY Wl CInhnRIem?7hY 21 HOnsiMCIRey 1SSy mAion

Copy Information

OEBPS/images/screenshot/pve-select-target-disk.png
X PROXMO Proxmox VE Installer

Filesystem | zfs (RAID1)

Proxn (PVE)

Note: ZFS is not compatible with disks backed by a
hardware RAID controller. For detals see the reference
The Proxmox Install{ documentation. stallation target
partitions your hard dig K is used for
packages and finally m| DiskSetup Advanced Options

bootable from hard dis| lartitions and data will

and data will be lost. | ardisk 0 | /devinvmeon (3168, QEMU NVMe Ctrl) +

Press the NextBUION . 4sck1 | Jdewnvmetni (3168, oemunwme e E detection
lcally configures your

Harddisk 2 | -- do not use -

rface
Harddisk 3 -- do not use - be done on the

e via a web browser.

Target: zfs (RAID1)| Options

Previous

OEBPS/images/screenshot/gui-datacenter-pool-window.png
Edit: Pool @

Name: development

Comment: IT development pool

OEBPS/images/screenshot/gui-datacenter-acme-register-account.png
Reaister Account ®

Name: default
ACME Directory: | Let's Encrypt V2

Terms of https:/letsencryptorg/documents/LE-
Service: November-15-2017.pdf

Accept TOS: %)

E-Mal ‘admin@example.com

OEBPS/images/screenshot/pve-gui-tfa-add-totp.png
Add a TOTP login factor

User testuser3@pve
D

Smartphone XY App

V763FSVLIBCCCZHSPCIZAUMYTLHLGUAX

me: | Proxmox VE - testnode

Add

OEBPS/images/screenshot/gui-create-ct-memory.png
Create: LXC Container ®

oo Tomplae Rootosk ey [N neworc 01

Memory (MiB) 512

ol|o

Swap (MiB) 512

© Help

OEBPS/images/screenshot/gui-node-summary.png
X PROXMOX vrarenvronment 604 e

Server View Node proc’
£ Datacenter (prod-eu-centra
B proct proa Q search
& sunmary
B proas O Notes
@ development st
8 System
= Network
Certiicates
@ ons
@ Hosts
© Tme
= Ssyslog
2 Updates
© Firewall
& Disks
. um
O LVM-Thin
™ Directory
&2 zZFs
@ cepn
© Repication
Task History
® Subscription
Tas Cluster log
Start Time |, End Time Node
2115 203556 2115 203557 prod1
2ul15 203553 Jul 15 2035 prod1
2115 20:1951 2115 20:1951 prodi
2115 20:19:45 2115 20:19:45 prod1

Jul 15 20:19:02

Jul 15 20:19:03

prodl

Package versions

8 ommenaon

O Retoot ® Shudown >_ Shell i BukActons © | © Help

Hour (average)

prod2 (Uptime: 11 days 00:07:07)

8 CPUUsage

= Load average

= RAM usage

B HD space(root)

cPu(s)
Kernel Version
PVE Manager Version

CPU usage
10

8

2

0
2019-07-15 2019-07-15 2
10:27:00 19:33:00

Server load

User name

aamin@pve
aamin@pve
aamin@pve
aamin@pve
aamin@pve

1,929 of 4 CPU(S)
© 10 delay 0.10%

050028021
25.12% (788 GIB 0f 3138 GIB) KSM sharing 0B
6.20% (249 GIB 0T 40.11GIB) & SWAP usage 0.00% (0 B 0f 8.00 GIE)

4x Intel(R) Xeon(R) CPU E3-1220 v3 @ 3.10GHz (1 Socket)
Linux 5.0.15-1-pve #1 SMP PVE 5.0.15-1 (Wed, 03 Jul 2019 10:51:57 +0200)
pve-manager/6.0-4/791aBd98

019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15
10:30:00 104500 195100 1957:.00 20:03:00 20:09:00 20:1500 20:21:00 20:27:00 20:33:00

®CPUusage @10 delay

Description stas
VM 9000 - Destray ok
VM 9000 - Create ok
VM 99999 - Desiroy. ok
VM 99999 - Create ok
VM 9000 - Destray ok

OEBPS/images/screenshot/gui-ceph-monitor.png
Node prod2"
Q search Monitor

Sum
O ey start stop Create

O Notes
Name Host Status

>_ shell
‘mon prod1. proa1 running
& System mon prodz proa2 running
= Network mon.prod3 proda running
Certficates
@ ons
@ Hosts
© Time
Syslog
£ Updates

U Firewall
8 Disks
|uwm
O LVM-Thin
W Directory Manager
= zFs start Stop Create Destr
@ cepn
@ Configuration

= ost Saus
morproat proat acive
D Monior morproc2 procz standy
& o Ju— procs sandoy
B CephFS

& Pools

Log
3 Replication

® Subscription

Address

192.168.30.64:6789/0
192.168.30.65:6789/0
192.168.30.66:6789/0

Sysi

Address
102168.30.64
102168.30.65
192168.30.66

"D Reboot () Shutdown

Version
15211
15211
15211

Version
15211
15211
15211

© Help

Quorum
Yes
Yes
Yes

OEBPS/images/screenshot/boot-grub.png
GNU GRUB version 2.0z+dfsgl-18-pvel

#Proxmox Virtual Environment GNU/Linux

Advanced options for Proxmox Virtual Environment GNU/Linux

Memory test (memtest8e+)

Memory test (memtest86+, serial console 115200)

Memory test (memtest86+, experimental multiboot)

Memory test (memtest86+, serial console 115200, experimental multiboot)

Use the T and | keys to select which entry is highlighted.
Press enter to boot the selected 05, 'e' to edit the commands before booting or
for a command-Line.

The highlighted entry will be executed automatically in Ss.

OEBPS/images/screenshot/gui-datacenter-mapping-usb-edit.png
‘Add USB mapping @
Name: [®useussvendomevicein

Mapping on Node: | pve-ceph-01 ~| Cnoose Device: | Passtrough a specific

O use UsB Port

Comment:

© Heip

OEBPS/images/screenshot/pve-gui-tfa-add-recovery-keys.png
Recovery Keys ®

95ac-d37d-1d09-994c
bb12-682f-5eed-3b49
aab3-a4dd-7105-4a9a
ae2b-79b7-5ab3-5181
6529-57ba-e980-2790
f3af-031a-5a49-9fac
belf-757c-f99e-2248
266b-1955-adda-a4bs
4e52-3282-163a-9¢70
8102-817-90d1-9bse

CceNouswNEG

Please record recovery keys - they wil only be displayed now

I Copy R S Print

OEBPS/images/screenshot/gui-create-ct-root-disk.png
Create: LXC Container

Gonera Templte CPU Memoy Netwok DNS Coniim
Disk size (GiB): | 8 T

Enable quota: (] AcLs Detautt

Skip replcation: (]

OEBPS/images/screenshot/gui-ha-manager-add-group.png
Create: HA Group

o wsess: (1
nofailback: a
Comment
O Node T Memory usage % CPU usage Priority
] demohostl 65.6 % 5.7% of 2CPUs
] demohost2 706 %

1.2% of 2CPUs

© Help

OEBPS/images/screenshot/gui-datacenter-acme-overview.png
Accounts

Add | View | Remove

Name 7'

default

staging

Challenge Plugins

Add | Edt Remove

Plugin T AP

pdns-example-com pdns.

OEBPS/images/screenshot/gui-cluster-join.png
Cluster Join ()

) Assisted join: Paste encoded cluster oin information and enfer password.

Information: ‘eyIpcEFKZHIIC3MIOIIXOTIUMTYALjI2LjlyNSIsImZpbmdicnByaWSOljoiNTY6QUIGQTGEREQENEUGR|QB0DUS
RKIBQKQBQZKEOTMENTUBMUMEQZIENKIGRDC60DENTQBQ)Y6MDUBQJKEMTgEMDISOUESMIUBMEQBQIU

6MzK6RDCERKUBNOMBRDYILCJyaWsnX2FKZHIOISIMTkyLJE20CAyNidyM]UILG516GxdLCI0b3RIDSI6eyJjbH
i w WVILWN M WSbnVtYmAlioiM

PeerAddress: | 192.168.26.225 Link 0 Default: IP resolved by node's hostname

Password. E

Fingerprint 56:AB:A8:DD:4E:F4:85:FB:BDICY:93:55:1C:C2:6B:D7:88:54:86:05:89:18:02:9A:25:0D:B5:39:D7-FE7C:D6

OEBPS/images/screenshot/gui-datacenter-webauthn-edit.png
Edit: WebAuthn Settings ()

ReyingPary: | mapveerampiecon]]

origin: hitps://mypve.example.com:8006

D: mypve.example.com

Note: WebAuthn requires using a trusted certificate.

OEBPS/images/screenshot/gui-create-ct-general.png
Create: LXC Container

[cenerel JRATTEN

Node:
cTD:
Hostname.

Unprivleged
container

© Help

demonostl
100
containerl

o

t Disk.

Network

Resource Pool
Password.

Confirm
password,

SSH public key:

DN

Canfirm

p—

OEBPS/images/screenshot/gui-qemu-migrate.png
Migrate VM 99999 ()

Source node: prod1. Target node: prod2 v

Mode: Offine

© Heip

OEBPS/images/screenshot/gui-storage-summary-local.png
X PROXMOX virtual Envionment 604 sercn 8 Documentation [=RCr

Server View ‘Storage Ylocal’ on node ‘prod2’
£ Datacenter (prod-eu-centra

B prodt 0) Erwy Hour (average)

B prod2 #E Content
3 100 (vM 100) & Permissions SIS
(] cephs (prod2)
Elcp (proa2) Enabled Yes
E{iso (prod2) Active Yes

E[iocal (prod2) Content VZDump backup file, ISO image, Container template

=[Jiocarm (proa2)

B o Type Directory
W development Usage 16,2096 (2.49 GIB of 40.11 GiE)
Usage
506
w06
06
206
106
)
2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2019-07-15 2010-07-15 2019-07-15 2019-07-15 2010-07-15 2019-07-15 2019-07-15
192700 103300 193900 194500 105100 195700 200300 20:09:00 201500 202100 2027:00 203300
@ Total Size @ Used Size
Tas Cluster log
Start Time | EnaTime Node User name Description Status
Jul 15 20:35:56 Jul 15 20:35:57 prod1. admin@pve VM 9000 - Destroy oK -
2ul 15203553 2ul 15 2035 prodl admin@pve VM 9000 - Create oK
2ul 15 2011951 2ul 15 2011951 prodl admin@pve VM 99999 - Destroy. oK
2ul 15 20:19:45 2ul 15 20:19:45 prodl admin@pve VM 99999 - Create oK

Jul 15 20:19:02 Jul 15 20:19:03 prodl admin@pve VM 9000 - Destroy oK

OEBPS/images/screenshot/gui-datacenter-metric-server-list.png
Datacenter
Q searcn Eat
& summary Name

& Cluster graphite-test
@ cepn influxdb-test
© Options

€ storage

Backup
3 Repiication
& Permissions
& Users
8 APITokens
& Groups
® Poois
Roles
@ Authentcation
< HA
* AcME
© Firewall
Ll Metric Server

© Support

Type

Graphite
InfluxDB.

Enabled

Yes

Yes

Server

192.168.0.50
192.168.0.60

© Help

Port

2003
8089

OEBPS/images/screenshot/gui-create-vm-general.png
Create: Virtual Machine ®

OS HadDisk CPU Memol Network Confirm

Node demonostl v Resource Poal v
VM ID: 100 <
Name TestuM
Statatboot: [stshuaown [
order
QemuAgent: [
Startup delay: detaut

Shutdown timeout: | default

© Help

OEBPS/images/screenshot/gui-login-window.png
Proxmox VE Login

User name: [roof

Password.
Realm: | Linux PAM standard authentication v
Language: English v

OEBPS/images/screenshot/boot-systemdboot.png
ual Environment
irmuare Interface

Proxmox
Reboot Into

Boot in 1 sec.

OEBPS/images/screenshot/gui-ceph-pools.png
Node prod2"
Q search
& summary
O Notes

>_ Shell

= Network
Certificates.
Q@ DNs
Q@ Hosts
O Time

Syslog

£ Updates

© Firewall

& Disks
s um
O wmThin
™ Directory
82 7Fs

@ Cepn
© Configuration
3 Monitor
& osp
™ CephFs
& Pools

Log
3 Replication

® Subscription

Edit

o
cephts_data
cephfs_metadata
cpaba
device_health_metrics

ssd

Size/min

RIS

#of Placement Gr.
256

2

2

256

1

128

Optimal # of PGs
256

2

16

256

1

128

"D Reboot () Shutdown

Autoscale Mode

SSS;SS

>_Shell || i BukAcions - | | @ Help

CRUSH Rule (ID)
replicated_rule (0)
replicated_rule (0)
replicated_rule (0)
replicated_rule (0)
replicated_rule (0)
replcated_ssd (1)

Used (%)
937.64 GiB (5.85%)
846.00 GiB (5.31%)
101,09 MiB (0.00%)
32031 GiB (2.08%)
147.90 MiB (0.00%)
08 (0.00%)
20578

OEBPS/images/screenshot/pve-tui-installer.png
Target harddisk:

<Abort>

Proxmox VE (8.6-2) Installer

< /dev/vda (16.00 GiB) >

<Advanced options>

<Previous>

OEBPS/images/screenshot/gui-datacenter-role-add.png
Create: Role ()

Privleges: Sys.Audit, Sys.Console, Pool Allocate

OEBPS/images/screenshot/gui-node-certs-add-domain.png
Create: Domain

Challenge Type: | DNS

Plugin: pdns-example-com

Domain prod pve.example.com

© Help

OEBPS/images/screenshot/gui-node-ceph-cephfs-panel.png
Node prod2’
Q search Create CepnFs

& summary Name

O Notes copnis

o B Metadata Servers

Create Destr

start stop

= Network

Name Host Status
Certificates.

‘mds.prodl prodl upistandby
‘mds.prod2 prod2 up:active
‘mds.prod3 prod3 up:standby

Q@ DNs
Q@ Hosts

O Time

Sysiog

2 Updates

U Firewall

B Disks
[JY
O WM-Thin
W Directory
= zFs

® cepn
& Configuration
3 Monitor
& osp
™ CephFs
& Pools

Log

3 Replication

® Subscription

Sysi

Data Pool

cephfs_data

Address
192.168.30.64:6805/3515026757
102.168.30.65:6801/1445057454
192.168.30.66:6801/1826014728

"D Reboot () Shutdown

Metadata Pool

cephfs_metadata

Version
15211
15211
15211

>_ shel

Buk Actions

© Help

OEBPS/images/screenshot/pve-install-summary.png
)X(pRDXMDx mox VE Installer

Please verify the displayed informations. Once you press the Install button, the installer will
begin to partition your drive(s) and extract the required files.

Filesystem: 2fs (RAID1)
Disk(s): /devinvmeOnl | /dev/nvmelnl
Country: Austria

Timezone: Europe/Vienna

Keymap: de

E-Mail: admin@yourdomain.tid
Management Interface: ens18

Hostname: nodesl

IP: 192.168.30.57

Netmask: 255.255.240.0

Gateway: 192.168.16.1

DNS: 10.10.0.1

Previous install

OEBPS/images/screenshot/gui-create-vm-system.png
Create: Virtual Machine

General 0S HardDisk CPU Memory Network Confim
Graphic card: | Defautt | scsi contoller: | virto scst
QemuAgent: [

Bi0S Defaut (SeaBI0S) v Machine Defaut (4401

© Help

OEBPS/images/screenshot/gui-pool-summary-development.png
X PROXMOX virtual Envionment 604 sercn 8 Documentaion

Server View Resource Pool: development
£ Datacenter (prod-eu-centra
& summary
B prod1 Status
B proaz # Members
Comment IT development pool
G 100 (vM 100) & Permissions.
Z] cepnis (prod2)
Elcp (proa2)
Eliso (pro2)
Z Jiocal (prod2)
Z [Jiocak-vm (prod2)
B proas
® development
Tas Cluster log
Start Time | End Time Node User name Description Status
Jul 15 20:35:56 Jul 15 20:35:57 prod1 admin@pve VM 9000 - Destroy oK -
2ul 15203553 2ul 15 2035 prodl admin@pve VM 9000 - Create oK
2ul 15 2011951 2ul 15 2011951 prodl admin@pve VM 99999 - Destroy. oK
2ul 15 20:19:45 2ul 15 20:19:45 prodl admin@pve VM 99999 - Create oK

Jul 15 20:19:02 Jul 15 20:19:03 prodl admin@pve VM 9000 - Destroy oK

OEBPS/images/screenshot/gui-datacenter-metric-server-graphite.png
Create: Graphite ()

e -

Server: 192.168.0.50 Port: 2003

o

Patn: proxmox

o 1o Atvarad

OEBPS/images/screenshot/gui-ceph-config.png
Node ‘prod2’
Q searcn
& summary
O Notes

>_ Shell

= Network
Certificates.
@ DNS
@ Hosts.
O Time

Syslog

2 Updates

U Firewal

& Disks
s um
O M-Thin
™ Directory
= zFs

® ceph
Configuration
3 Monitor
8 osb
™ CepnFs
& Poois

Log
3 Replication

® Subscription

Configuration

global]
auth_client_required = cephix
auth_cluster_required = cephx
auth_service_required = cephix
cluster_network = 192.168.30.64120
fsid = c4181a6-56eb-4168-D452-8balf81caza
mon_allow_pool_delete = true
mon_host = 192.168.30.64 192.168.30.65 192.168.30.66.
0sd_pool_defaul_min_size = 2
0sd_pool_default_size
public_network = 192.168.30.64/20
cluster_network = 10.3.0.0/24

[elient]
keyring = fetclpve/priv/Scluster.Sname keyring

[mas]
keyring = Nvar/lib/ceph/mds/ceph-Sidikeyring

[mds.proa3]
host = prod3
mds standby for name = pve

[mds.prod1]

Configuration Database
WHO OPTION VALUE

mon auth_allow_insecure_global_id_reclaim false

O Reboot () Shutdown >_ Shell

Crush Map

begin crush map
tunable choose_local_tries 0

tunable choose_local_tallback_tries 0
tunable choose_total_tries 50
tunable chooseleaf_descend_once 1
tunable chooseleaf_vary_r 1

tunable chooseleaf_stable 1

tunable straw_calc_version 1

tunable allowed_bucket_algs 54

#devices
device 0 0sd.0 class hdd
device 1 0sd.1 class hdd
device 2 0sd.2 class hdd
device 3 0sd.3 class hdd
device 4 0sd.4 class hdd
device 5 0sd.5 class hdd
device 6 0sd.6 class hdd
device 7 0sd.7 class hdd
device 8 0sd.8 class hdd
device 9 05d.9 class ssd.
device 10 0sd.10 class ssd
device 11 0sd.11 class ssd
device 12 0sd.12 class ssd
device 13 0sd.13 class ssd
device 15 0sd.15 class ssd
device 16 05d.16 class ssd
device 17 0sd.17 class ssd

#types
type 0 osd.
type 1 host
type 2 chassis
type 3 rack
type 4 1ow
type 5 pau
type 6 pod
type 7 room
type 8 datacenter
type 9 zone
type 10 region
type 11 root

#buckets
host prod {
[d-3 #donot change unnecessarily
id-4classhdd #do not change unnecessarily
id-9classssd #do not change unnecessarily
weight 6.178
alg straw2
hash0 #njenkinsl

Buk Actions

© Heip

OEBPS/images/screenshot/gui-create-vm-os.png
Create: Virtual Machine

Memory Network nfirm

Genera sysm s

® Use CDIDVD disc image fie (1s0) Guest 0S:
Storage: | local v ype: Linux
150 image: 10, <] Version 5x-26Kemel

) Use physical CDIDVD Drive

Do not use any media

OEBPS/images/screenshot/gui-create-vm-memory.png
Create: Virtual Machine

Wik P e

General 05

Memary (MiB): s12 o

Minimum memory (Mig): | 512 o
@

Ballooning Device:

© Help

OEBPS/images/screenshot/pve-grub-menu.png
Proxmox VE 8.1 (iso release 1) - https://uwww.proxmox.com/

X PROXMOX

Welcome to Proxmox Virtual Environment

Install Proxmox VE (Graphical)
Install Proxmox VE (Terminal UT)

Advanced Opt ions

enter: select, arrow keys: navigate, esc: back

OEBPS/images/screenshot/pve-installation.png
)X(pRDXMDx mox VE Installer

Proxmox VE closes the gap between high JavaScript based GUI

performance Linux virtualization and the Fast search-driven interface, capable of
missing parts - easy deployment and handling several hundred VMs.
management. Web Based Console

SSL secured browser-integrated console
view to all Virtual Servers and hosts.
Online Backup

Backup (and restore) your running Virtual
Servers.

Live Migration

Move your running servers from one
physical host to another without downtime.

Proxmox VE is the number one choice for Linux
based virtualization platforms.

extracting pve-kermel-5.0.15-1-pve_5.0.15-1_amds4.deb

OEBPS/images/screenshot/gui-create-vm-cpu.png
Create: Virtual Machine ()

Genera 05 Sysem Hard Dik Memoy Network Contim

Sockets: 1 Type: Default (kvm64)
Cores: 1 Total cores: 1

VCPUS: 1 CPU units: 1024

CPU limit: unlimited Enable NUMA:]

Extra CPU Flags:

Default md-clear Required to let the guest OS know if MDS is mitigated correctly

Default peid Meltdown fix cost reduction on Westmere, Sandy-, and IvyBridge
Intel CPUS

Default spec-ctrl Allows improved Spectre mitigation with Intel CPUs

Default ssbd Protection for "Speculative Store Bypass” for Intel models

Default ibpb Allows improved Spectre mitigation with AMD CPUS

Default virt-ssbd Basis for "Speculative Store Bypass” protection for AMD models ~

oD P—

OEBPS/images/screenshot/gui-datacenter-notification-overview.png
Datacenter © Help

Search Notification Targets

Summary o

O m o

Notes
Enable | Target Name | Type Comment origin
Cluster
v mailto-root Sendmail Send mall to root@pam's email address Buitin
Ceph

Options

@
&
s

Storage

Backup

3 Replication
o' Permissions
& Users

8 APITokens

& Two Factor

& croups

® Pools

Roles

@ Reaims Notification Matchers °
G Add | Moty
<& SDN

Enable | Matcher Name | Comment origin

Zones v defaut matcher Route all notfications to mail4o-root Buitn

5 VNets v example-matcher custom
© Options

* ACvE
U Firewal

L Metric Server

© Resource Mappings
£ Notfications

© Support

OEBPS/images/screenshot/gui-datacenter-realm-add-ldap.png
Add: LDAP Server

Realm: office-de

Base Domaln Name: | ou=Users,de=example.de=f

User Attrbute wd
Name:

Defauit: [m)
Comment

© Help

Server.
Fallback Server.
Port:

SsL.

Require TFA:

det.example.proxmox.com

de2.example.proxmox.com
“
none v

OEBPS/images/screenshot/pve-setup-network.png
)X(pRDXMDx mox VE Installer

Please verify the displayed network
configuration. You will need a valid network
configuration to access the management
interface after installation.

Afterwards press the Next button. You will be

shown a list of the options that you chose
during the previous steps.

Management Interface:
Hostname (FQDN):

1P Address:

Netmask:

Gateway:

DN Server:

IP address: Set the IP address for your
server.

Netmask: Set the netmask of your network.

Gateway: IP address of your gateway or
firewall.

DNS Server: IP address of your DNS server.

ens18 - ba:33:cf:2f:a0:2f (virtio_net) v
nodes.yourdomain.tld

192.168.30.57

255.255.240.0

102.168.16.1

10.10.0.1

Previous

OEBPS/images/screenshot/gui-ceph-status-dashboard.png
Node ‘prod 1"

Q search

Health
8 Ssummary
O Notes

Status Severity | Summary

>_ Shell No Warni

o System
= Network
* Certicates HEALTH_OK
@ DNs
@ Hosts

© Time

Syslog
Updates

Firewall

D an

Disks

[)

O vMThin

™ Drectory Geph Version 152.11
= 7Fs

@ comn Performance

Configuration

3 Monitor Usage

a osp

™ CophFs

& Pools

11%

2.08TiBof 19.19 TiB

og
3 Replication

Task History
® Subscription

Recovery/
Rebalance:

0.00% (6.33 MiB/s - 5h 44m 34.95 left)

6.33 MiB/s

Reads:

Writes:

IOPS:

I0PS:
Writes:

Status

osDs

®h Oout
oup 17 0
©Down 0 4
Total: 21
< Outdated OSDs
osd.14:

0sd.18
osd.19

Services
Monitors

prodi: v prod2: v

proda: v

O Retoot | © Shutdown >_ Shell i BukActons © © Help
PGs

® activeclean 637

© activesremapped-+backfil_wat 65

© active remapped-+backfiling: 3

Managers Meta Data Servers

prodi: v | prod2 v | prodd: v prodt: v | prod2: v | prodd: v
36.45 MIB/s
105.94 MiB/s
36
92

OEBPS/images/screenshot/gui-datacenter-notification-gotify.png
Add: Gotify

Endpoint Name:
Enable:

Server URL:
API Token

Comment:

© Hep

[gotty-exampie]

“
hitp/igotify.example.org:8888

Gotity notifications for on-call admins

OEBPS/images/screenshot/gui-cluster-create.png
Create Cluster ()

Cluster Name: | prod-central]

Linko, Optional, defalts o IP resolved by node's hostname v

Link 1 Optional second link for redundancy v
© Help

Advanced (/]

OEBPS/images/screenshot/gui-node-ceph-install.png
Node 'nina’ D Reboot O Shutdown > Shel ¢ BukActons - @ Help

Q search

8 summary

O Notes

> Shel

o System

2 Updates

U Frewall

& Disks

@ Ceph
© Configuration
3 Monitor Ceph s not Installed on this node.

p— Would you like to install it now?

- CepiFs Install Cephn

<& Pools

Log

3 Replication

Task History
® Subscription

OEBPS/images/screenshot/gui-datacenter-acme-add-dns-plugin.png
Add: ACME DNS Pluain ®

Plugin ID: pdns-example-com |
Validation Delay: <
DNS API PowerDNS server -
PDNS_Serverld= pdns

PDNS_Token= super-secrettoken

PDNS_Tt= 60 <
PDNS_Url= pdns.example.com

© Help

OEBPS/images/screenshot/gui-qemu-summary-tags-edit.png
Virual Machine 99999 (DemovM) on node prod [production]) + = % v > st | O Shudow 4 Mgate | >_ Console - More - @ Help

8 summary
>_ Console
&3 Hardware
& Cloud-nit
© Options

[Task History

@ Monitor

Backup
3 Repiication
D Snapshots
© Firewall

o Permissions

Hour (average)
DemoVM Notes Q&

i stats stopped
@ Hastate none
B Node prod1

B CPU sage 0.00%of 1 CPUS)
3 Memory usage 0.00% (0B of 100 GiE)

& Bootisk size o8

=1Ps No Guest Agent configured

CPU usage @ CPU usage

05
045
04
035
03
R025
02
015
01
005

o 4
20021118 20221118 2022-1118 2022-11-18 20221118 2022-11-18 20221118 2022-11-18 20221118 2022-11-18 20221118 2022-11-18 2022-11-18 2022-11-18
145200 145700 150200 1507:00 151200 151700 152200 1527:00 153200 1537.00 154200 1547:00 155200 1557:00

Memory usage ® Total | @ RAM usage
(5
0aa
038

031
@
8

£ o025
@
019

OEBPS/images/screenshot/gui-node-repositories.png
Node 'd7"

Q search

8 summary

O Notes

> Shel

o System
= Network
Certficates
@ ons
@ Hosts
© Time

Syslog
2 Updates
) Repositories.
U Frewall
& Disks
[Y]
O vMThin
& Directory
= 7Fs
@ Ceph
3 Replcation
B Task History

® Subscription

Status

o

Al OK, you have production-ready
repositories configured!

APT Repositories
© Reload | Add Enake
Enabled | Types URIs
] File: fetclaptisourcesist 2 repositories)
=] deb http:/ideb debian.org/debian/
4 deb http:/isecuriy.debian.org/debian-securtty
] File: fetclaptisources st d/pve-enterprise.lst (1 repository)

=] deb https:/enterprise.proxmox.comidebian/pve

© You get supported updates for Proxmox VE

Suites

bullseye

bullseye-security

bullseye

Components

main contrib non-free

main contrib non-free

pve-enterprise

'O Reboot

Options

@ Shutdown >_ Shell

Origin

© Debian
© Debian

X Proxmox

i Buk Actions

Comment

© Help

OEBPS/images/screenshot/pve-set-password.png
)X(pRDXMDx mox VE Installer

Proxmox Virtual Environment is a full Password: Please use a strong password.
featured highly secure GNU/Linux system based It should have 8 or more characters. Also
on Debian. combine letters, numbers, and symbols.

Please provide the root password in this step. E-Mail: Enter a valid email address. Your
Proxmox VE server will send important alert
notifications to this email account (such as
backup failures, high availability events,
etc.).

Press the Next button to continue
installation.

Password | 0000008

Confirm | @ .

EMail | admin@yourdomain.tid

Previous

OEBPS/images/screenshot/gui-ha-manager-status.png
Datacenter
Q search
8 summay
© options

£ strage

Backup
B Replication
o Permissions

& Users

& Groups

® Pools

Roles

@ Authentication
@ Ha

& Groups

¥ Fencing
© Firewall

< Support

Status
Type
quorum
master
Im

Im

Resources

Add | Edit

D

vm:501
cts10

Status
ok

demohostz (active, Fri Jun 30 09:41:54 2017)
demohost1 (active, Fri Jun 30 09:41:47 2017)
demohostz (e, Fri Jun 30 09:4153 2017)

Remove
State Max. Restart | Max. R
stopped demonostl 1 1
queued demonostl 1 1

Group
prefer_nodel

mygroup.

© Help

ption

OEBPS/images/screenshot/gui-datacenter-notification-matcher.png
Edit: Notification Matcher

General [[RENRS) arets to oty
Y A Node type:
T Match severity: waming, error, unknown Vateh Type
) Match calendar: mon. ri 816
© Match fiel: type=vzdump. Field
Value:

Mateh Field
Exact
type

vzdump

OEBPS/images/screenshot/gui-datacenter-two-factor.png
Datacenter

Q search Add Edit
& summary User Enabled

@ (= testuser3@pve Yes

& Cluster
@ Ceph

£ Options
£ storage

Backup
3 Repiication
o' Permissions
& Users
8 APITokens
@, Two Factor
& croups
® Pools
Roles
@ Reaims
@ HA
* ACME
U Firewal
L Metric Server

© Support

TFAType

recovery

Created

20211115 12:20:38

Description

@ Hep

OEBPS/images/screenshot/gui-ha-manager-add-resource.png
Add: Resource: Container/Virtual Machine

cTvm D s Group preer_nodeL

Max. Restart: | 1

o

Request State: | started
Max. Relocate: | 1

ol|o

Comment.

© Help

OEBPS/images/screenshot/gui-datacenter-notification-sendmail.png
Add: Sendmail

Endpoint Name:
Enable:
Recipient(s):

Additional
Recipient(s):

Comment:

© Hep

[senamait-adming

“

root@pam
aamin@example.org

Send notification mail to admins

OEBPS/images/screenshot/gui-datacenter-summary.png
X PROXMOX vrarenvronment 604 e

Server View

Datacenter

& Datscenter prodeucena

B prodr
B prod2
B prods

@ development

Tas

Cluster log

Start Time |,

Jul 15 20:35:56
Jul 15 20:35:53
Jul 15 20:19:51
Jul 15 20:19:45
Jul 15 20:19:02

&8 summary

= Cluster

@ cepn

Options

& storage

B Backup

© Replcation

& Permissions.
& Users
& Groups
® Pools
Roles

@ Authentication

® HA
© Firewall

 Support

End Time

Jul 15 20:35:57
Jul 15 2035

Jul 15 20:19:51
Jul 15 20:19:45
Jul 15 20:19:03

Node
proa1
proa1
proa1
proa1
proa1

Health

Status

Cluster: prod-eu-central, Quorate: Yes

Guests
Virtual Machines
© Running
Stopped
Resources
cPU
2%
of 12.CPU(S)
Nodes
User name Description
admin@pve VM 9000 - Destroy
admin@pve VM 9000 - Create
admin@pve VM 99999 - Destroy
admin@pve VM 99999 - Create:
admin@pve VM 9000 - Destroy

T L) Create VM

Nodes Ceph
+ Online 3
x Offline 0
HEALTH_OK
LXC Container
1 © Running [
2 Stopped 1
Memory Storage

22% 4%

20.35 GIB 0f 94.13 GiB 256.60 GIB 0f 6.82 T8

00 .,

stas
ok
ok
ok
ok
ok

OEBPS/images/screenshot/gui-datacenter-options.png
Datacenter

Search

Summary

O mo

Notes
Cluster
Cceph

Options

@
&
s

Storage

Backup

3 Repiication
o' Permissions

& users
& APITokens
@, Two Factor
& Groups
® Pools

Keyboard Layout
HTTP proxy

Console Viewer

Email from address

MAC address prefix
Migration Settings.

HA Settings

U2F Settings

WebAuthn Settings
Bandwidin Limits

Maximal Workers/bulk-action
Next Free VMID Range

Tag Style Override

User Tag Access

Registered Tags

German (de)
none

Default (xterm js)

root@Shostname
none
Network=10.3.0.64/24 typs

shutdown_policy=migrate
None

None

None

4

Default

© Hep

Tree Shape: Defat (Circe), Ordering: Default (Alphabetical),

Mode existing, Pre-defined

OEBPS/images/screenshot/gui-ceph-osd-status.png
Node prod2’ O Reboot) Shutdown | >_ Shell | § BulkActons

Q searcn 2 Reload | | Creale: OSD | | Manage Global Flags. NoOSD selected b Start Ml Stop o @n
& summany Name cass | osoType Saws | Veson | wegn | rewegn | Used(6) T | AppyiComE
5o Latency (ms)
o E £ default
B poss 15211
o System 8 osd1s ssa bluestore wOIin® 15211 0.9007 100 835 oaLsLGE 5/5
3 0= B osd12 ssa bluestore. wpOIin® 15211 0.45479 100 1379 46576 GiB 212
Certfcates 8 osanl ssd bluestore wOIin® 15211 046579 100 658 476.94GiB 12112
@ DNs 8 osds ndd bluestore wOIin® 15211 363869 100 1018 364TiB 39/39
@ Hosts 8 osds hdd bluestore upO/in® 15211 0.45409 100 1518 46500 Gig 13113
8 osd3 ndd bluestore wOIin® 15211 045409 100 1824 4650068 a3
Oum B proa2 15211
Sysiog 8 osd16 ssd bluestore wOIin® 15211 0.9007 100 1082 o3151GE 5/5
£ Updates 8 osa13 ssd bluestore wOIin® 15211 045479 100 1353 4657668 11
U Firewall 8 osd10 ssd bluestore. upO/in® 15211 0.46579 1.00 1092 476.94GiB 20720
& s 8 osd7 ndd bluestore wOIin® 15211 363869 100 1080 364TiB 15115
B osd4 ndd bluestore wOIin® 15211 058199 100 867 596.00GiB nm
D& 8 osd2 ndd bluestore wOIin® 15211 058199 100 664 596008 12112
O M-Thin B poa 15211
™ Directory 8 osa17 ssd bluestore wOIin® 15211 0.9007 100 1315 31516 414
2 zFs 8 osde ssd bluestore. upO/in® 15211 0.46579 1.00 795 47694GB 12112
© conn B osds ndd bluestore wOIin® 15211 363869 100 145 364TiB 14114
8 osa1 ndd bluestore wOIin® 15211 058199 100 778 596.00Gi8 12112
Configuration 8 osdo ndd bluestore wOIin® 15211 058199 100 1211 sesseGE ESYES)
3 Monitor
a osp
™ CephFs
& Pools
Log
3 Replication

® Subscription

OEBPS/images/screenshot/gui-datacenter-search.png
X PROXMOX virtual Envionment 604 sercn 8 Documentaion

Server View Datacenter
et oo S EEEE Qo Seatcn
Eb prod2 &8 summary Type T Description Diskusage... | Memoryus.. | CPUusage | Uptime
Bows mows w socmo :
@ cepn B> node prod1 68% 204% 3.7%o0f4C... 11days 00:0.
@ Options. B> node prodz2 62% 251% 25%0f4C... 11 days 000.
£ Storage B> noce prod3 61% 193% LO0%of4C... 11days 003
B Backup W pool development -
© Repication gemu 101 (win1o) -
& Permissions. gemu 501(VMS501) N
A w=s G} gemu 100 (VM 100) 8L4% 36%o012C... 3days 23:29.
Oems S ciorage cephs (prodl) 00% .
O Fms £ storage cp (prodl) 62% -
4 roes £ sorage iso (prod) 38% -
£ storage local (prod1) 68% s
& Authentcaton £ storage localvm (prod1) 08% -
v = sworage cephfs (prod2) 00% -
W G S sorge cop(proc2) 62% -
< Support £ somge o (proa) 28% .
£ storage local (prod2) 62% -
£ storage localvm (prod2) 00% s
£ storage cephfs (prod3) 00% -
= sworage cp (prod3) 62% -
£ sorage iso (prod3) 38% -
£ storage local (prod3) 61% 5
£ storage localvm (prod) 00% -
Tas Cluster log
Start Time End Time Node User name Description Status
Jul 15 20:35:56 Jul 15 20:35:57 prod1 admin@pve VM 9000 - Destroy oK -
Jul 15 20:35:53 Jul 15 20:35:* prodl admin@pve 'VM 9000 - Create oK
2ul 15 2011951 2ul 15 2011951 prodl admin@pve VM 99999 - Destroy. oK
2ul 15 20:19:45 2ul 15 20:19:45 prodl admin@pve VM 99999 - Create oK

Jul 15 20:19:02 Jul 15 20:19:03 prodl admin@pve VM 9000 - Destroy oK

OEBPS/images/screenshot/gui-qemu-add-replication-job.png
Virtual Machine 99999 (DemaVM') on node ‘demohostl’
8 summary Add] Edt Remove

Cansole

Guest

& Hardware

@ options

Task History

® Monitor

Backup

5 Replication

cvmo

D snapsnots

) S Target:
Frewal

N Schedule:

& Permissions
Rate (VB/s)

Comment.

Enabled

@ Hep

Create: Replication Job

> start Shutdown @ Remove Migrate
Schedule n
Targ Status Last Sync

®

demonost2

II

#/15 - Every 15 minutes v

o

unlimited

.

[T Clone

Dur

— Console

© Help

OEBPS/images/screenshot/gui-ha-manager-groups-view.png
Datacenter
Q search Create | Edit Remove
O Smmesy resti
© EpiEnD mygroupl No
€ Storage mygroup2 Yes
Backup prefer_nodel. Mo

B Replication
o Permissions

& Users

& Groups

® Pools

Roles

@ Authentication
@ Ha

& Groups

¥ Fencing
© Firewall

< Support

node3:1,noded,node2:1 node1:2
nodeL node2

nodel

© Help

complex group
simple restricted group

prefer nodel

OEBPS/images/screenshot/gui-cloudinit-hardware.png
Virtual Machine 9000 (CloudinitBase) on node ‘demohosty’ B Start () Shutdown 1 Migrate >_ Console More
& summary Remove | Edi Reszedisk Movedisk | Revert

Console ¢ B Hard Disk Detault
Q3 Hardware « © coovodive 20068

= Network D
& cloudinit = Networcbedee 1 (1 sockets, 1 cores)
[8 ERDisc et

© options - e

% USB Device

{ local-m:ym-9000-cloudinit media=cdrom
Task History & Cloudnit Drive
[P local-mym-9000-disk-1 size=1G
® Monitor
2 Network Device (net0) Viftio=36 7E:L4:6E 33:CC.bridge=umbr0
Backup
5 Replication
D Snapshots

Firewall

o
-

Permissions

OEBPS/images/screenshot/pve-select-location.png
)X(pRDXMDx mox VE Installer

The Proxmox Installer automatically makes Country: The selected country is used to
location based optimizations, like choosing the choose nearby mirror servers. This will
nearest mirror to download files. Also make sure speedup downloads and make updates
to select the right time zone and keyboard more reliable.

layout.

Time Zone: Automatically adjust daylight

Press the Next button to continue installation. saving time.

Keyboard Layout: Choose your keyboard
layout.

Country
Tine sone ([

Keyboard Layout | German

Previous

OEBPS/images/screenshot/gui-datacenter-tag-style.png
Edit: Tag Color Override

oo Sape. [Derat e

xV‘

O Defau (prabetoa)

Color Overrides:

Add | Remove

O Tag ‘ Background

[ron

0 | producton © oo

| B

© Hep

OEBPS/images/screenshot/gui-node-certs-upload-custom.png
Upload Custom Certificate @

Private Key (Optional)

~—BEGIN RSA PRIVATE KEY-—
MIEpAIBAAKCAQEA miirAywKe TsZisorebEQTnVrhnyGR1]T138CADAaCTY3QZD
195JybZRRGDTFUAtFIVRy VOV 7KViiZ5GilWiwtslraPN2y5LLKZusHSM/ERkra

AU IHEmHTY VAN e DL AR Y 2yt PRI AR RISV 72lK 1NV 1o
From Fil

Certficate Chain:

MIFVDCCBDygAWIBAGISAGNSXuXOXV6ey6TB+Zu1 Vpr2MAOGCSGGSIbIDQEBCWUA
MEoxCzAJBgNVBAY TAIVTMRYwFAYDVQQKEwW1 MZXQncyBFbmNyeXBOMSMwIQYDVQQD

EunM 7Y OineuREhm Ao Y RAIEE 1 Al hynminaGRYM B aFw T FubANE N ISMT [2Funy

-——BEGIN CERTIFICATE-— I

OEBPS/images/screenshot/gui-qemu-summary.png
X PROXMOX vrarenvronment 604 e

Virtual Machine 99999 on node ‘prod1’

Server View
£ Datacenter (prod-eu-centra 5
B proat SUEY
510 (CT510) > Console
101 (wint0) D Haravare
501 (vM 501
w) & Cloud-Init
£] cephfs (prod1) & Options
Elcp (proan) = Task Hi
istory
E{iso (prod1) & o
([1ocal (prod1) .
= [Jioca-vm (prod1) 2
B prod2 & Replication
B proas D Snapshots
development
® pmen © Firewall

Tas

Cluster log

Start Time |,

Jul 15 20:36:39
Jul 15 20:35:56
Jul 15 20:35:53
Jul 15 20:19:51
Jul 15 20:19:45

& Permissions.

End Time

Jul 15 20:36:39

2ui 15 20:35:
2152035153
215 2010551
215201945

Node
proa1
proa1
proa1
proa1
proa1

DemovM

i Status
® HA State
B Node

8 CPUUsage
8 Memory usage

B Bootdisk size

=1Ps

CPU usage

1

08

@

User name

aamin@pve
aamin@pve
aamin@pve
aamin@pve
aamin@pve

> start

stopped
none.

prod1

0.00% of 1 CPU(S)
0.00% (0 B of 1.00 GiB)
o8

No Guest Agent configured

Description
VM 99999 - Create
VM 9000 - Destray
VM 9000 - Create
VM 99999 - Desiroy.
VM 99999 - Create

& owemenaon | EEET

Shutdown Migate >_ Console More .~ @ Help

Notes &

stas
ok
ok
ok
ok
ok

OEBPS/images/screenshot/gui-qemu-full-clone.png
Clone VM 99999

Target node demonostl v | Target Storage:
VM D: 100009 <

Name. DemoVM-Clone

Resource Pool v

© Help

Same as source

Ray

disk image (raw)

